Silicon PIN diode
Rev. 01 - 27 May 2004
Preliminary data sheet

1. Product profile

1.1 General description

Planar PIN diode in a SOD882 ultra small SMD plastic package.

1.2 Features

- High voltage, current controlled RF resistor

■ Low losses at very low currents

- Low diode capacitance
- Very low series inductance
- For applications up to 3 GHz .

1.3 Applications

- RF attenuators and switches.

2. Pinning information

[1] Package marked by a masking bar.

3. Ordering information

Table 2: Ordering information

Type number	Package		
	Name	Description	Version
BAP142L	-	Leadless ultra small plastic package; 2 terminals; body $1.0 \times 0.6 \times 0.5 \mathrm{~mm}$	SOD882

4. Marking

Table 3: Marking

Type number	Marking code
BAP142L	E1

5. Limiting values

Table 4: Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{R}	continuous reverse voltage		-	50	V
I_{F}	continuous forward current		-	100	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\mathrm{S}}=90^{\circ} \mathrm{C}$	-	315	mW
$\mathrm{~T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature		-65	+150	${ }^{\circ} \mathrm{C}$

6. Thermal characteristics

Table 5: Thermal characteristics

Symbol	Parameter	Conditions	Typ	Unit
$\mathrm{R}_{\text {th(}(-\mathrm{s})}$	thermal resistance from junction		190	K/W
	to soldering point			

7. Characteristics

Table 6: Electrical characteristics
$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{F}	forward voltage	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$	-	0.95	1.1	V
I_{R}	reverse current	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$	-	-	100	nA
		$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$	-	-	20	nA
C_{d}	diode capacitance	$\mathrm{f}=1 \mathrm{MHz}$; see $\underline{\text { Figure } 2}$				
		$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$	-	0.26	-	pF
		$\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}$	-	0.23	0.35	pF
		$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$	-	0.17	0.25	pF
$r_{\text {D }}$	diode forward resistance	$f=100 \mathrm{MHz}$; see Figure 1				
		$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}$	-	3.3	5.0	Ω
		$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$	-	2.4	3.6	Ω
		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	-	1.0	1.5	Ω
		$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$	-	0.6	0.9	Ω

Table 6: Electrical characteristics ...continued $T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\left\|s_{21}\right\|^{2}$	isolation	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$; see Figure 4				
		$\mathrm{f}=900 \mathrm{MHz}$	-	16.0	-	dB
		$\mathrm{f}=1800 \mathrm{MHz}$	-	11.6	-	dB
		$\mathrm{f}=2450 \mathrm{MHz}$	-	9.9	-	dB
$\overline{\left\|s_{21}\right\|^{2}}$	insertion loss	$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}$; see Figure 3				
		$\mathrm{f}=900 \mathrm{MHz}$	-	0.24	-	dB
		$\mathrm{f}=1800 \mathrm{MHz}$	-	0.25	-	dB
		$\mathrm{f}=2450 \mathrm{MHz}$	-	0.26	-	dB
$\left\|s_{21}\right\|^{2}$	insertion loss	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$; see Figure 3				
		$\mathrm{f}=900 \mathrm{MHz}$	-	0.18	-	dB
		$\mathrm{f}=1800 \mathrm{MHz}$	-	0.19	-	dB
		$\mathrm{f}=2450 \mathrm{MHz}$	-	0.21	-	dB
$\left\|s_{21}\right\|^{2}$	insertion loss	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$; see $\underline{\text { Figure 3 }}$				
		$\mathrm{f}=900 \mathrm{MHz}$	-	0.10	-	dB
		$\mathrm{f}=1800 \mathrm{MHz}$	-	0.11	-	dB
		$\mathrm{f}=2450 \mathrm{MHz}$	-	0.14	-	dB
$\overline{\left\|s_{21}\right\|^{2}}$	insertion loss	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$; see Figure 3				
		$\mathrm{f}=900 \mathrm{MHz}$	-	0.07	-	dB
		$\mathrm{f}=1800 \mathrm{MHz}$	-	0.09	-	dB
		$\mathrm{f}=2450 \mathrm{MHz}$	-	0.11	-	dB
τ_{L}	charge carrier life time	when switched from $\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \text { to } \mathrm{I}_{\mathrm{R}}=6 \mathrm{~mA} ; \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega ; \\ & \text { measured at } \mathrm{I}_{\mathrm{R}}=3 \mathrm{~mA} \end{aligned}$	-	0.12	-	$\mu \mathrm{s}$
LS	series inductance	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA} ; \mathrm{f}=100 \mathrm{MHz}$	-	0.6	-	nH

Fig 1. Forward resistance as a function of forward current; typical values.

(1) $I_{F}=100 \mathrm{~mA}$.
(2) $I_{F}=10 \mathrm{~mA}$.
(3) $\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$.
(4) $\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}$.

Diode inserted in series with a 50Ω stripline circuit and biased via the analyzer Tee network; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig 3. Insertion loss $\left(\left.\left|\mathbf{S}_{21}\right|\right|^{2}\right)$ of the diode as a function of frequency; typical values.

Fig 2. Diode capacitance as a function of reverse voltage; typical values.

Diode zero biased and inserted in a 50Ω microstrip circuit; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig 4. Isolation $\left(\left|\mathbf{s}_{21}\right|^{2}\right)$ of the diode as a function of frequency; typical values.

8. Package outline

Fig 5. Package outline.

9. Revision history

Table 7: Revision history

| Document ID | Release date | Data sheet status | Change notice | Order number | Supersedes |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| BAP142L_1 | 20040527 | Preliminary data | - | 939775013056 | - |

10. Data sheet status

Level	Data sheet status $[1]$	Product status $\underline{[2]}[3]$	Definition I
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.	
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

11. Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

12. Disclaimers

Life support - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

13. Contact information

14. Contents

1 Product profile . 1
1.1 General description. 1
1.2 Features 1
1.3 Applications . 1

2 Pinning information. 1
3 Ordering information. 1
4 Marking.. . . 2
5 Limiting values. 2
6 Thermal characteristics. 2
7 Characteristics................................... 2
8 Package outline . 5
9 Revision history. 6
10 Data sheet status . 7
11 Definitions . 7
12 Disclaimers...................................... 7
13 Contact information 7

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

