

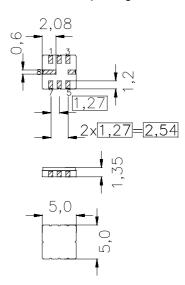
Data Sheet B4846

B4846

Low-Loss Filter for Mobile Communication

225,0 MHz

Data Sheet

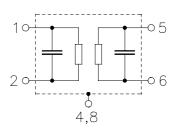


Features

- Low-loss RF filter for mobile telephone
- Channel selection in GSM, PCN systems
- Ceramic Package for Surface Mounted Technology (SMT)
- Low insertion attenuation
- Low group delay ripple

Terminals

Gold-plated Ni



SMD Ceramic package QCC8C

Dimensions in mm, approx. weight 0,10 g

Pin configuration

1, 2	Input, balanced
5, 6	Output, balanced
4, 8	Case - ground
3. 7	To be arounded

Туре	Ordering code	Marking and Package	Packing
		according to	according to
B4846	B39231-B4846-U310	C61157-A7-A67	F61074-V8088-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T	- 25/+ 80	°C	
Storage temperature range	$T_{\rm stg}$	- 40/+ 85	°C	
DC voltage	$V_{\rm DC}$	5	V	
ESD voltage	V* _{ESD}	100*	V	Machine Model, 10 pulses
Source power	P_{s}	10	dBm	

^{* -} acc. to JESD22-A115A (Machine Model), 10 negative & 10 positive pulses

B4846

Low-Loss Filter for Mobile Communication

225,0 MHz

Data Sheet

Characteristics

Operating temperature range:

 $T = 25 \,^{\circ}\text{C}$ $Z_{\text{S}} = 860 \,\Omega \parallel -2.0\text{pf}$ $Z_{\text{L}} = 860 \,\Omega \parallel -2.0\text{pf}$ Terminating source impedance: Terminating load impedance:

		min.	typ.	max.	
Nominal frequency	$f_{\rm c}$	_	225,01	_	MHz
Minimum insertion attenuation		3,0	3,9	4,5	dB
(including loss in baluns and matching elements)	α_{min}	0,0	0,0	7,0	uD .
	Δα				
$f_{\rm N}$ - 67,5 kHz $f_{\rm N}$ + 67,5 kHz		_	0,6	1,6	dB
$f_{\rm N}$ - 80,0 kHz $f_{\rm N}$ + 80,0 kHz		_	0,7	3,0	dB
Group delay ripple (p-p)	Δτ				
$f_{\rm N}$ - 50,0 kHz $f_{\rm N}$ + 50,0 kHz		_	0,2	1,3	μs
$f_{\rm N}$ - 67,5 kHz $f_{\rm N}$ + 67,5 kHz			0,3	1,5	μs
$f_{\rm N}$ - 80,0 kHz $f_{\rm N}$ + 80,0 kHz			0,6	1,8	μs
Relative attenuation (relative to α_{min})					
f _N - 15,00 MHz f _N - 5,00 MHz		42	45	_	dB
f_{N} - 5,00 MHz f_{N} - 2,00 MHz		42	46	_	dB
f_{N} - 2,00 MHz f_{N} - 0,60 MHz		36	37	-	dB
f _N - 0,60 MHz f _N - 0,40 MHz		26,5	29	_	dB
f_{N} - 0,40 MHz f_{N} - 0,20 MHz		6,5	12	-	dB
$f_{\rm N}$ + 0,20 MHz $f_{\rm N}$ + 0,40 MHz		6,5	12	_	dB
$f_{\rm N}$ + 0,40 MHz $f_{\rm N}$ + 0,60 MHz		26,5	29	_	dB
$f_{\rm N}$ + 0,60 MHz $f_{\rm N}$ + 2,00 MHz		36	37	_	dB
$f_{\rm N}$ + 2,00 MHz $f_{\rm N}$ + 5,0 MHz		43	47	_	dB
$f_{\rm N}$ + 3,00 MHz $f_{\rm N}$ + 15,0 MHz		42	45	_	dB
Impedance within the passband					
Input: $Z_{IN} = R_{IN} C_{IN}$		_	860 2,0	_	$\Omega \parallel pF$
Output: $Z_{OUT} = R_{OUT} \parallel C_{OUT}$		_	860 2,0	_	Ω pF
Temperature coefficient of frequency 1)	TC _f	_	-0,036	_	ppm/K ²
Frequency inversion point	T_0		25	<u> </u>	°C

¹⁾ Temperature dependence of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$

B4846

Low-Loss Filter for Mobile Communication

225,0 MHz

Data Sheet

Characteristics

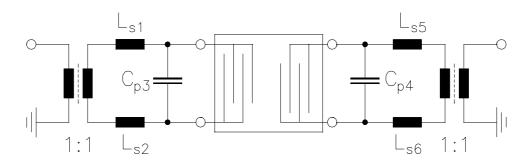
 $T = -20 \text{ to } +75^{\circ}\text{C}$ Operating temperature range: $Z_{\rm S} = 860 \ \Omega \parallel -2.0 {\rm pf}$ $Z_{\rm L} = 860 \ \Omega \parallel -2.0 {\rm pf}$ Terminating source impedance: Terminating load impedance:

		min.	typ.	max.	
Nominal frequency	f_{N}	_	225,00	_	MHz
	α_{min}			= 0	
Minimum insertion attenuation		3,0	3,9	5,0	dB
(including loss in baluns and matching elements)					
	Δα				
$f_{\rm N}$ - 67,5 kHz $f_{\rm N}$ + 67,5 kHz		_	0,7	2,2	dB
f_{N} - 80,0 kHz f_{N} + 80,0 kHz		_	0,8	3,2	dB
	Δτ				
f_{N} - 50,0 kHz f_{N} + 50,0 kHz		_	0,2	1,3	μs
f_{N} - 67,5 kHz f_{N} + 67,5 kHz		_	0,4	1,6	μs
f_{N} - 80,0 kHz f_{N} + 80,0 kHz		_	0,7	1,8	μs
Relative attenuation (relative to α_{min})	α_{rel}				
f_{N} - 15,00 MHz f_{N} - 5,00 MHz		42	45	_	dB
f_{N} - 5,00 MHz f_{N} - 2,00 MHz		43	46	_	dB
f_{N} - 2,00 MHz f_{N} - 0,60 MHz		35	37	_	dB
f_N - 0,60 MHz f_N - 0,40 MHz		26	29	_	dB
f_{N} - 0,40 MHz f_{N} - 0,20 MHz		5	13	_	dB
$f_{\rm N}$ + 0,20 MHz $f_{\rm N}$ + 0,40 MHz		5	11	_	dB
$f_{\rm N}$ + 0,40 MHz $f_{\rm N}$ + 0,60 MHz		26	29	_	dB
$f_{\rm N}$ + 0,60 MHz $f_{\rm N}$ + 2,00 MHz		35	37	_	dB
$f_{\rm N}$ + 2,00 MHz $f_{\rm N}$ + 5,00 MHz		43	47	_	dB
$f_{\rm N}$ + 5,00 MHz $f_{\rm N}$ + 15,00 MHz		42	45		dB
Impedance within the passband					
Input: $Z_{IN} = R_{IN} C_{IN}$		_	860 2,0	_	$\Omega \parallel pF$
Output: $Z_{OUT} = R_{OUT} C_{OUT}$			860 2,0	_	$\Omega \parallel pF$
Temperature coefficient of frequency 1)	TC _f	_	-0,036	_	ppm/K ²
Frequency inversion point	T_0	_	25	_	°C

¹⁾ Temperature dependence of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$

B4846

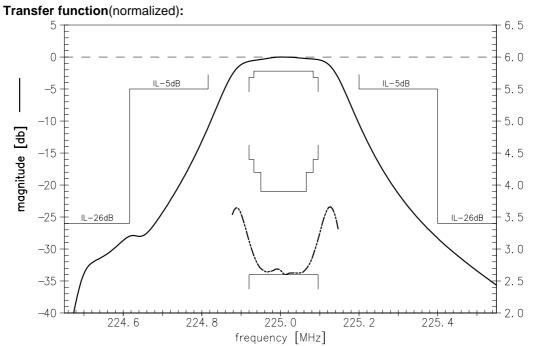
Low-Loss Filter for Mobile Communication

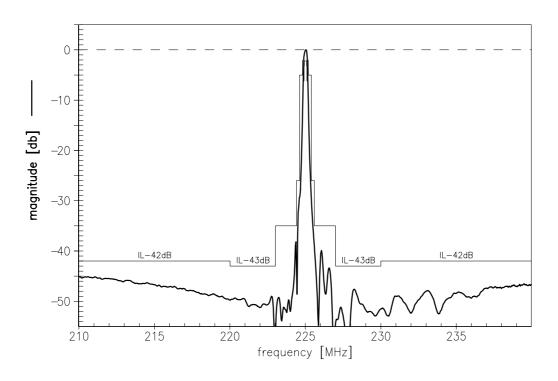

225,0 MHz

Data Sheet

Test matching network (element values depend on pcb layout)

Source impedance $\rm Z_S{=}50~\Omega,$ load impedance $\rm Z_L{=}50~\Omega$


$$\begin{array}{l} L_{s1} = \ L_{s2} = \ 47 \ nH \\ L_{s5} = \ L_{s6} = \ 47 \ nH \\ C_{p3} = C_{p4} = \ 1,2 \ pF \end{array}$$


B4846 **SAW Components Low-Loss Filter for Mobile Communication** 225,0 MHz

Data Sheet

group delay [us]

Low-Loss Filter for Mobile Communication

225,0 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC PD P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2005. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.