(I) aic

AIC1383B

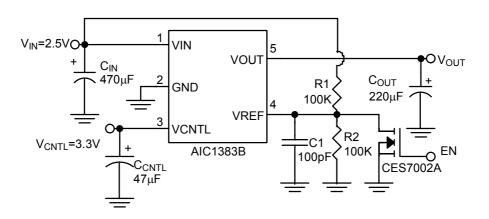
3A Termination Regulator

FEATURES

- 3A Source and Sink Current Ability
- Support DDR1 (1.25V_TT) and DDR2 (0.9V_TT) Requirements
- Low Output Voltage Offset, ±20mV
- High Accuracy Output Voltage at Full-Load
- Adjustable V_{OUT} by External Resistor
- Low External Component Count
- Current Limit protection
- Thermal Protection
- SOP-8, TO-252 and TO-263 Packages

APPLICATIONS

- Mother Board
- Graphic Cards
- DDR Termination Voltage Supply


DESCRIPTION

AIC1383B linear regulator is designed to achieve 3A source and sink current while regulating an output voltage to within 45mV.

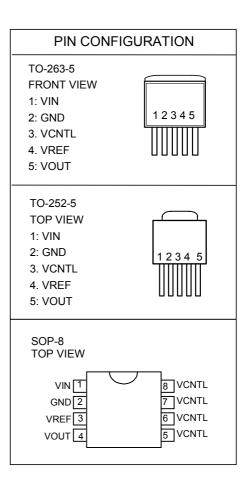
AIC1383B converts voltage supplies range from 1.6V to 6V into an output voltage that adjusts by two external voltage divider resistors. It provides an excellent voltage source for active termination schemes of highspeed transmission lines as those seen in high-speed memory buses, and it meets the JEDEC SSTL-2 and SSTL-3 specifications for termination of DDR-SRAM.

Built-in current limiting in source and sink mode, with thermal shutdown provide maximal protection to the AIC1383B against fault conditions.


TYPICAL APPLICATION CIRCUIT

ORDERING INFORMATION

aic

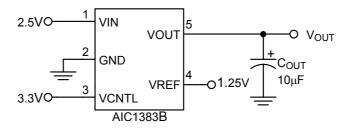


Example: AIC1383BCE5TR

→ 3A Version, in TO-252-5 Package, Tape & Reel Packing Type

AIC1383BPE5TR

→ 3A Version, in Lead Free TO-252-5 Package, Tape & Reel Packing


ABSOLUTE MAXIMUM RATINGS

Supply Voltage		-0.4V to 7V
Operating Temperature Range		-40°C~85°C
Junction Temperature		125°C
Storage Temperature Range		-65°C ~150°C
Lead Temperature (Solder, 10sec)		260°C
Thermal Resistance θ_{JC}	TO-263	3°C /W
	TO-252	12.5°C /W
	SO-8	40°C /W
Thermal Resistance θ_{JA}	TO-263	60°C /W
(Assume no ambient airflow, no heatsink)	TO-252	100°C /W
	SO-8	160°C /W

Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

∢I∑ aic

TEST CIRCUIT

ELECTRICAL CHARACTERISTICS

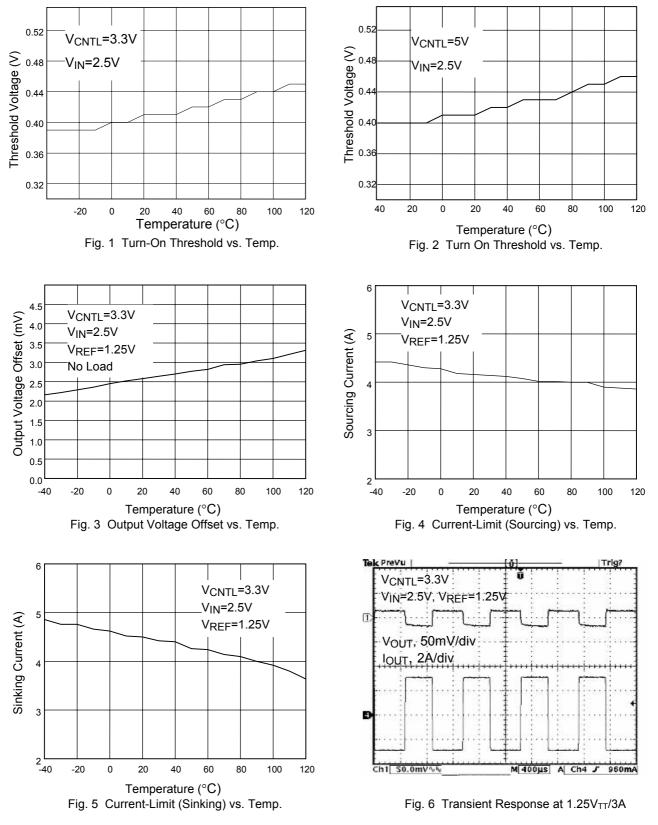
(V_{CNTL}=3.3V, V_{IN}=2.5V, V_{REF}=0.5V_{IN}, C_{OUT}=10 μ F, T_A=25°C, unless otherwise specified) (Note 1)

PARAMETER	TEST CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Input Voltage (DDR1/2)	Keep operate V _{CNTL} ≥V _{IN} at	V _{IN}	1.6	2.5	6	v	
(Note2)	power on and off sequences	V _{CNTL}	3.0	3.3	6	V	
Output Voltage	I _{OUT} = 0mA	V _{OUT}		V _{REF}		V	
Output Voltage Offset	I _{OUT} = 0mA	V _{OS}	-20		20	mV	
Load Regulation (DDR1/2)	I _{OUT} =0.1mA ~ +3A			35	45	m)/	
(Note2)	I _{OUT} =0.1mA ~ -3A	ΔV_{LOR}		35	45	mV	
Quiescent Current	V _{REF} <0.2V, V _{OUT} = OFF	lQ		8	30	μA	
Operating Current of V_{CNTL}	No load	I _{CNTL}		3	10	mA	
V _{REF} Bias Current	V _{REF} =1.25V		0		1	μA	
Current Limit		١ _{IL}	3.2	4	6.5	А	
THERMAL PROTECTION							
Thermal Shutdown Temperature	3.3V≤V _{CNTL} ≤5V	T _{SD}	125	150		°C	
Thermal Shutdown Hysteresis	Guaranteed by design			30		°C	
SHUTDOWN SPECIFICATIONS							
Shutdown Threshold	Output ON (V _{REF} =0V→1.25V)		0.8			- V	
	Output OFF (V _{REF} =1.25V→0V)				0.2		

Note 1: Specifications are production tested at T_A=25°C. Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with Statistical Quality Controls (SQC).

Note 2: DDR2 is not available for TO-263 package.

Note 3: V_{OS} is the voltage measurement, which is defined as V_{OUT} subtracted V_{REF} .


Note 4: Load regulation is measured at constant junction temperature, using pulse testing with a low ON time.

Note 5: Current limit is measured by pulsing a short time.

Note 6: For operate system safely; V_{CNTL} must be always greater than $V_{\text{IN}}.$

<u>(I)</u> aic.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

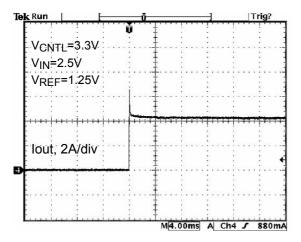


Fig. 7 Output Short-Circuit Protection (Sinking)

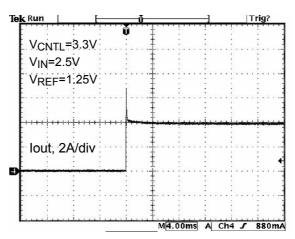
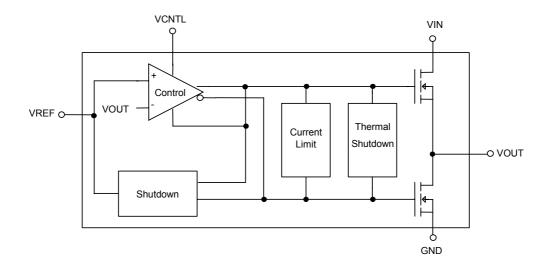



Fig. 8 Output Short-Circuit Protection (Sourcing)

BLOCK DIAGRAM

aic

(I) aic

PIN DESCRIPTIONS

- PIN 1: VIN Input supply pin. It provides main power to create the external reference voltage by divider resistors for regulating V_{REF} and V_{OUT}.
- PIN 2: GND Ground pin.
- PIN 3: VCNTL Input supply pin. It is used to supply all the internal control circuitry.

APPLICATION INFORMATION

Layout Consideration

AIC1383B is in SO-8 (DDR1/2), TO-252-5 (DDR1/2) and TO-263-5 (DDR1) packages resulting in unable to dissipate heat easily when it operates in high current. In order to prevent maximum junction temperature exceeded, the suitable copper area has to use.

PIN 4: VREF - Reference voltage input. Pull this pin low to shutdown device.PIN 5: VOUT - Output pin.

The large copper at V_{CNTL} pins is available, and the heat dissipation is relieved. Using via to lead heat into the bottom layer to strengthen as below figures show.

All capacitors should be placed as close as possible to relative pins.

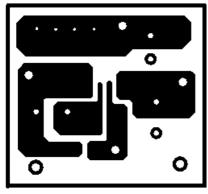


Fig. 9 Top layer of SO-8

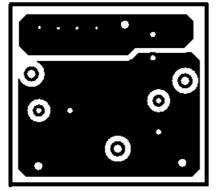
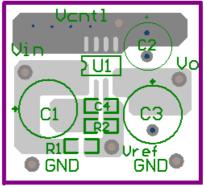
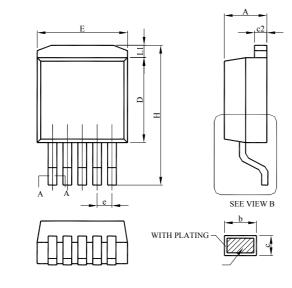
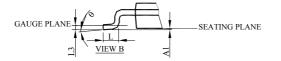


Fig. 10 Bottom layer of SO-8

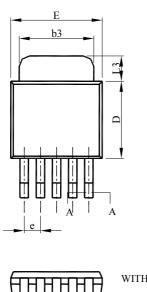


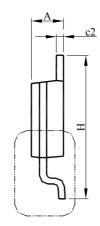

Fig. 11 Placement of SO-8


PHYSICAL DIMENSIONS (unit: mm)

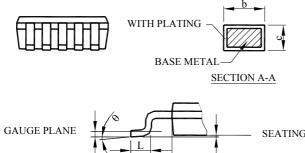
• TO-263-5

`<u>⊅</u>aic.


s	TO-263-5L		
S Y B O	MILLIMETERS		
O L	MIN.	MAX.	
А	4.06	4.83	
A1	0.00	0.25	
b	0.51	0.99	
С	0.38	0.74	
c2	1.14	1.65	
D	8.38	9.65	
Е	9.65	10.67	
е	1.70 BSC		
Н	14.61	15.88	
L	1.78	2.79	
L1		1.68	
L3	0.25 BSC		
θ	0°	8°	



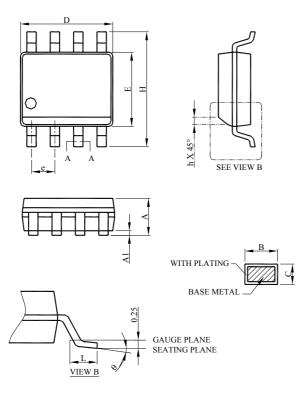
TO-252-5 •



2

SEE VIEW B

A1


VIEW B

S Y	TO-252-5L		
M B O	MILLIM	MILLIMETERS	
O L	MIN.	MAX.	
А	2.19	2.38	
A1	0.00	0.13	
b	0.51	0.71	
b3	4.32	5.46	
С	0.46	0.61	
c2	0.46	0.89	
D	5.33	6.22	
E	6.35	6.73	
е	1.27 BSC		
Н	9.40	10.41	
L	1.40	1.78	
L1	2.67 REF		
L2	0.51 BSC		
L3	0.89	2.03	
θ	0°	8°	

- SEATING PLANE

• SOP-8

< o	SOP-8 M MILLIMETERS		
M B			
0 L	MIN.	MAX.	
А	1.35	1.75	
A1	0.10	0.25	
В	0.33	0.51	
С	0.19	0.25	
D	4.80	5.00	
E	3.80	4.00	
е	1.27 BSC		
Н	5.80	6.20	
h	0.25	0.50	
L	0.40	1.27	
θ	0°	8°	

Note:

Information provided by AIC is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AIC product; nor for any infringement of patents or other rights of third parties that may result from its use. We reserve the right to change the circuitry and specifications without notice.

Life Support Policy: AIC does not authorize any AIC product for use in life support devices and/or systems. Life support devices or systems are devices or systems which, (I) are intended for surgical implant into the body or (ii) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.