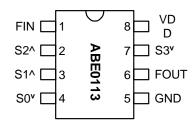


FEATURES


• Spread Spectrum Clock Generator with selectable multiplier (1x, 2x and 4x).

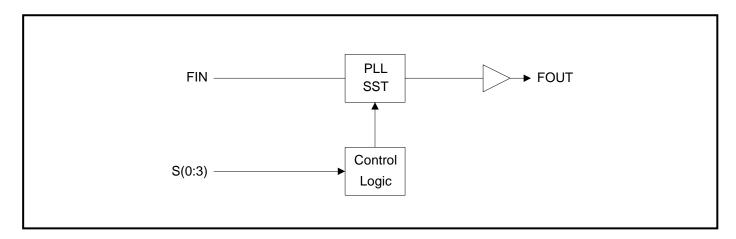
- Output frequency ranges: 24MHz to 240MHz.
- Selectable Down Spread Modulation.
- TTL/CMOS compatible outputs.
- 3.3V Operating Voltage.
- Low short term jitter.
- Available in 8-Pin 150mil SOIC.

DESCRIPTION

The ABE0113 is a Spread Spectrum Clock Generator designed for the purpose of reducing EMI in high-speed digital systems. The selectable Down Spread modulation magnitude (see table below) permits EMI reduction without over-clocking the output. The device operates over a very wide range of input frequencies and provides 1x to 4x modulated clock outputs.

PIN CONFIGURATION

FIN = 24 ~ 120 Mhz


Note: v: $30k\Omega$ Internal Pull down ^: $30k\Omega$ Internal Pull up.

OUTPUT CLOCK (FOUT) SELECTION

S3 S	S2	S 1	S0	FIN Range (MHz)	FOUT	Spread Spectrum Modulation		
33	32				FUUT	Frequency	Magnitude	
0	0	0	0	24 - 60	X1		-1.5%	
0	0	0	1	24 - 60	X1		-2.0%	
0	0	1	0	24 - 60	X1		-2.5%	
0	0	1	1	24 - 60	X1		-3.0%	
0	1	0	0	24 - 60	X2		-0.5%	
0	1	0	1	24 - 60	X2	Fin / 1024	-1.0%	
0	1	1	0	24 - 60	X2		-1.5%	
0	1	1	1	24 - 60	X2		-2.0%	
1	0	0	0	24 - 60	X2	FIII / 1024	-2.5%	
1	0	0	1	24 - 60	X2		-3.0%	
1	0	1	0	24 - 60	X4		-0.5%	
1	0	1	1	24 - 60	X4		-1.0%	
1	1	0	0	60 - 120	X1		-0.5%	
1	1	0	1	60 - 120	X1		-1.0%	
1	1	1	0	60 - 120	X1		-1.5%	
1	1	1	1	60 - 120	X1		-2.0%	

BLOCK DIAGRAM

PIN DESCRIPTIONS

Name	Number	Туре	Description		
FIN	1	I	Input Clock Frequency, 24MHz to 120MHz.		
S2	2	I	Digital control input to select multiplication factor and SST modulation amplitude. Has internal pull-up.		
S1	3	I	Digital control input to select multiplication factor and SST modulation amplitude. Has internal pull-up.		
S0	4	I	Digital control input to select multiplication factor and SST modulation amplitude. Has internal pull-down.		
GND	5	Р	Ground.		
FOUT	6	0	SST Modulated Clock Frequency Output. The frequency before modulation is synthesized by multiplying the input frequency by 1X, 2X, or 4X, depending on S(0:3).		
S3	7	I	Digital control input to select multiplication factor and SST modulation amplitude. Has internal pull-down.		
VDD	8	Р	3.3V Power Supply.		

ELECTRICAL SPECIFICATIONS

1. Absolute Maximum Ratings

PARAMETERS	SYMBOL	MIN.	MAX.	UNITS
Supply Voltage	V _{DD}		4.6	V
Input Voltage, dc	Vı	-0.5	V _{DD} +0.5	V
Output Voltage, dc	Vo	-0.5	V _{DD} +0.5	V
Storage Temperature	Ts	-65	150	°C
Ambient Operating Temperature*	TA	-40	85	°C
Junction Temperature	TJ		125	°C
Lead Temperature (soldering, 10s)			260	°C
ESD Protection, Human Body Model			2	kV

Exposure of the device under conditions beyond the limits specified by Maximum Ratings for extended periods may cause permanent damage to the device and affect product reliability. These conditions represent a stress rating only, and functional operations of the device at these or any other conditions above the operational limits noted in this specification is not implied.

2. DC/AC Specifications

PARAMETERS	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Voltage	V_{DD}		2.97		3.63	V
Input High Voltage	VIH		0.7* V _{DD}			V
Input Low Voltage	V _{IL}				0.3* V _{DD}	V
Input High Current	Іін				100	μΑ
Input Low Current	lıL				100	μΑ
Output High Voltage	Vон	IOH=5mA, V _{DD} =3.3V	2.4			
Output Low Voltage	V _{OL}	IOL=6mA, V _{DD} =3.3V			0.4	
Input Frequency	Fin		24		120	MHz
Maximum interruption of FIN					none	μS
Input Capacitance	C _{in1}			4		pF
Pull-up Resistor	R _{pu}	PIN 2, 3		30		kΩ
Pull-down Resistor	R _{pd}	PIN 4, 7	İ	30		kΩ
Short Circuit Current	Isc			50		mA
3.3V Dynamic Supply Current	Icc	No Load		20		mA

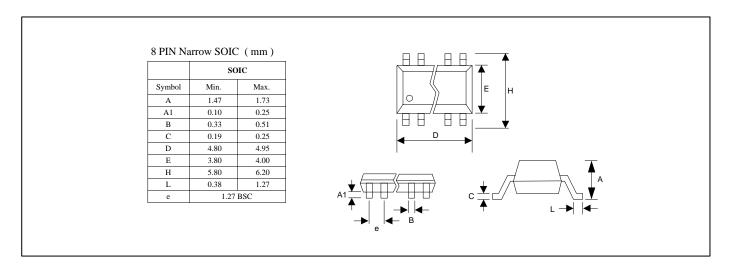
^{*} Note: Operating Temperature is guaranteed by design for all parts (COMMERCIAL and INDUSTRIAL), but tested for COMMERCIAL grade only.

3. TIMING CHARACTERISTICS

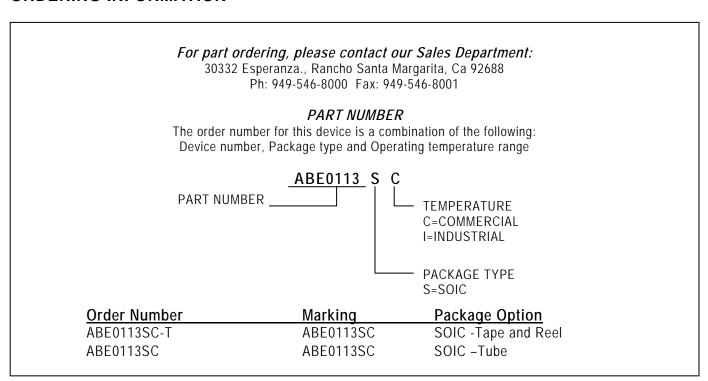
PARAMETERS	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Rise Time	Tr	Measured at 0.8V ~ 2.0V @ 3.3V	0.8	0.95	1.1	ns
Fall Time	Tf	Measured at 2.0V ~ 0.8V @ 3.3V	0.78	0.85	0.9	ns
Output Duty Cycle	DT		45	50	55	%
Input to Output Delay			2		4	ns
Cycle to Cycle Jitter	Тсус-сус	Over output frequency range @ 3.3V			100	ps

FUNCTIONAL DESCRIPTION

Selectable spread spectrum and modulation rates


The ABE0113 provides selectable multiplication factor, as well as selectable modulation rate. Selection is made by connecting pins 2 (S2), 3 (S1), 4 (S0), and 7 (S3) to a logical "zero" or "one", according to the output clock selection table on page 1.

Default values for S(0:3) through internal pull-up and pull-down resistor


Selection pins S0 and S3 have an internal pull-down resistor of $30k\Omega$, pins 2 and 3 (S1 and S2) have an internal pull-up resistor of $30k\Omega$. This internal pull-down (or pull-up) resistor will pull the input value to a logical "zero" (or "one" respectively) by default, i.e. when the pin is not connected to GND (VDD respectively). In order to override the internal pull-up (pull-down), the pin has to be connected to VDD (GND respectively).

PACKAGE INFORMATION

ORDERING INFORMATION

Abracon Corporation, reserves the right to make changes in its products or specifications, or both at any time without notice. The information furnished by Abracon is believed to be accurate and reliable. However, Abracon makes no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon this product.

LIFE SUPPORT POLICY: Abracon's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of Abracon Corporation.