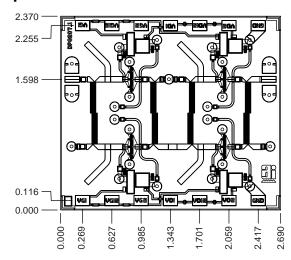
28–36 GHz GaAs MMIC Low Noise Amplifier

III Alpha

AA035N1-00, AA035N2-00


Features

- Dual Bias Supply Operation (4.5 V)
- 2.8 dB Typical Noise Figure at 32 GHz
- 12 dB Typical Small Signal Gain
- 0.25 µm Ti/Pd/Au Gates
- 100% On-Wafer RF, DC and Noise Figure Testing
- 100% Visual Inspection to MIL-STD-883 MT 2010

Description

Alpha's two-stage balanced 28–36 GHz MMIC low noise amplifier has typical small signal gain of 12 dB with a typical noise figure of 2.6 dB at 32 GHz. The chip uses Alpha's proven 0.25 μ m low noise PHEMT technology, and is based upon MBE layers and electron beam lithography for the highest uniformity and repeatability. The FETs employ surface passivation to ensure a rugged, reliable part with through-substrate via holes and gold-based backside metallization to facilitate a conductive epoxy die attach process.

Chip Outline

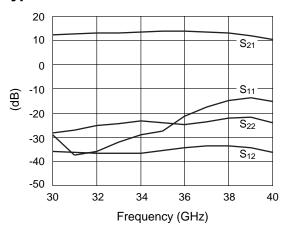
Dimensions indicated in mm. All DC (V) pads are $0.1 \times 0.1 \text{ mm}$ and RF In, Out pads are 0.07 mm wide. Chip thickness = 0.1 mm.

AA035N1-00 Electrical Specifications at 25°C ($V_{DS} = 4.5 \text{ V}$, $I_D = 70 \text{ mA}$)

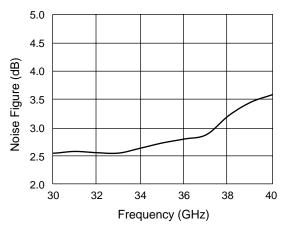
Parameter	Condition	Symbol	Min.	Typ. ³	Max.	Unit
Drain Current		I _{DS}		70	90	mA
Small Signal Gain	F = 28–36 GHz	G	10	12		dB
Noise Figure	F = 32 GHz	NF		2.8	3.2	dB
Input Return Loss	F = 28–36 GHz	RL _I		-17	-12	dB
Output Return Loss	F = 28–36 GHz	RLO		-20	-12	dB
Output Power at 1 dB Gain Compression ¹	F = 35 GHz	P _{1 dB}		10		dBm
Thermal Resistance ²		$\Theta_{\sf JC}$		50		°C/W

AA035N2-00 Electrical Specifications at 25°C ($V_{DS} = 4.5 \text{ V}$, $I_D = 70 \text{ mA}$)

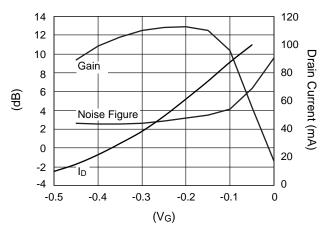
Parameter	Condition	Symbol	Min.	Typ. ³	Max.	Unit
Drain Current		I _{DS}		70	90	mA
Small Signal Gain	F = 28–36 GHz	G	9	12		dB
Noise Figure	F = 32 GHz	NF		3.0	3.8	dB
Input Return Loss	F = 28–36 GHz	RL _I		-17	-12	dB
Output Return Loss	F = 28–36 GHz	RLO		-20	-12	dB
Output Power at 1 dB Gain Compression ¹	F = 35 GHz	P _{1 dB}		10		dBm
Thermal Resistance ²		ΘJC		50		°C/W


^{1.} Not measured on a 100% basis.

^{2.} Calculated value based on measurement of discrete FET.

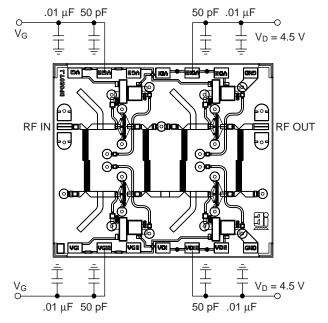

^{3.} Typical represents the median parameter value across the specified

frequency range for the median chip.


Typical Performance Data

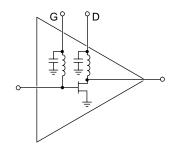
Typical Small Signal Performance S-Parameters ($V_D = 4.5 \text{ V}$)

Typical Noise Figure Performance vs. Frequency

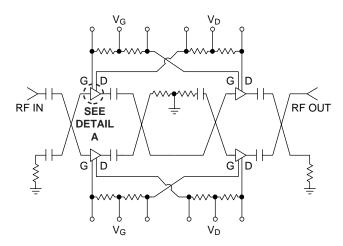


Typical 35 GHz Noise Figure and Gain as a Function of Gate Voltage (VG)

Absolute Maximum Ratings


Characteristic	Value			
Operating Temperature (T _C)	-55°C to +90°C			
Storage Temperature (T _{ST})	-65°C to +150°C			
Bias Voltage (V _D)	5.5 V _{DC}			
Power In (P _{IN})	16 dBm			
Junction Temperature (T _J)	175°C			

Bias Arrangement



For biasing on, adjust V_G from zero to the desired value (-0.3 V typically is optimum). Then adjust V_D from zero to the desired value (4.5 V recommended). For biasing off, reverse the biasing on procedure.

Circuit Schematic

Detail A

