FEATURES

Fast access time :

Preliminary Rev. 0.6

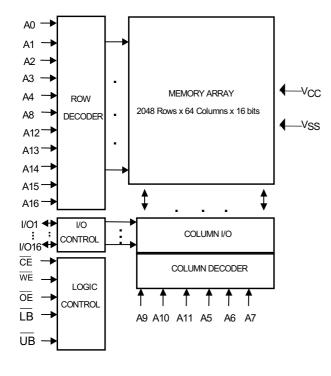
55ns(max) for Vcc=3.0V~3.6V 70/100 ns(max) for Vcc=2.7V~3.6V

CMOS Low operating power
 Operating current: 45/35/25mA (Icc max)
 Standby current: 20 uA(TYP.) L-version
 3 uA(TYP.) LL-version

■ Single 2.7V~3.6V power supply

■ Operating temperature: Industrial: -40°C~85°C

■ All inputs and outputs TTL compatible


Fully static operationThree state outputs

■ Data retention voltage: 1.5V (min)
■ Data byte control : LB (I/O1~I/O8)

UB (I/O9~I/O16)

■ Package : 44-pin 400mil TSOP II 48-pin 6mm × 8mm TFBGA

FUNCTIONAL BLOCK DIAGRAM

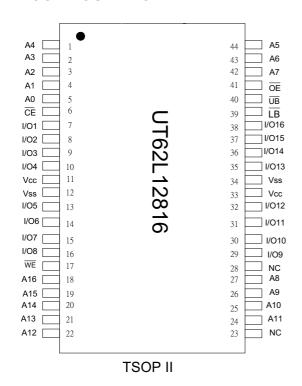
GENERAL DESCRIPTION

The UT62L12816(I) is a 2,097,152-bit low power CMOS static random access memory organized as 131,072 words by 16 bits.

The UT62L12816(I) operates from a single 2.7V \sim 3.6V power supply and all inputs and outputs are fully TTL compatible.

The UT62L12816(I) is designed for low power system applications. It is particularly suited for use in high-density high-speed system applications.

PIN DESCRIPTION


SYMBOL	DESCRIPTION
A0 - A16	Address Inputs
I/O1 - I/O16	Data Inputs/Outputs
CE	Chip Enable Input
WE	Write Enable Input
ŌĒ	Output Enable Input
LB	Lower-Byte Control
UB	High-Byte Control
V _{CC}	Power Supply
V _{SS}	Ground
NC	No Connection


UTRON TECHNOLOGY INC.

1F, No. 11, R&D Rd. II, Science-Based Industrial Park, Hsinchu, Taiwan, R. O. C.

TEL: 886-3-5777882 FAX: 886-3-5777919

PIN CONFIGURATION

TRUTH TABLE

MODE	CE	ŌE	WE	LB	UB	I/O OPE	RATION	SUPPLY CURRENT
						I/O1-I/O8	I/O9-I/O16	
Standby	Н	Х	Х	Х	Х	High – Z	High – Z	I _{SB} , I _{SB1}
	Х	Х	Х	Н	Н	High – Z	High – Z	I _{SB} , I _{SB1}
Output	L	Н	Н	L	Х	High – Z	High – Z	I_{CC},I_{CC1},I_{CC2}
Disable	L	Н	Н	Х	L	High – Z	High – Z	
Read	L	L	Н	L	Н	D _{out}	High – Z	I_{CC},I_{CC1},I_{CC2}
	L	L	Н	Н	L	High – Z	D _{OUT}	
	L	L	Н	L	L	D_OUT	D _{OUT}	
Write	L	Х	L	L	Н	D _{IN}	High – Z	I_{CC},I_{CC1},I_{CC2}
	L	Х	L	Н	L	High – Z	D _{IN}	
	L	Х	L	L	L	D_IN	D _{IN}	

Note: H = V_{IH}, L=V_{IL}, X = Don't care.

ABSOLUTE MAXIMUM RATINGS*

PARAMETER		SYMBOL	RATING	UNIT
Terminal Voltage with Respe	ect to V _{SS}	V_{TERM}	-0.5 to 4.6	V
Operating Temperature	Industrial	T _A	-40 to 85	°C
Storage Temperature		T _{STG}	-65 to 150	°C
Power Dissipation		P_{D}	1	W
DC Output Current		I _{out}	50	mA
Soldering Temperature (und	er 10 secs)	Tsolder	260	$^{\circ}\mathbb{C}$

^{*}Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

DC ELECTRICAL CHARACTERISTICS ($V_{CC} = 2.7V \sim 3.6V$, TA = -40°C to 85°C(I))

PARAMETER	SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Power Voltage	V _{cc}			2.7	3.0	3.6	V
Input High Voltage	V _{IH}			2.0	-	V _{cc} +0.3	V
Input Low Voltage	V_{IL}			-0.2	-	0.6	V
Input Leakage Current	I _{LI}	$V_{SS} \leq V_{IN} \leq V_{CC}$		- 1	1	1	μΑ
Output Leakage Current	I _{LO}	$V_{SS} \leq V_{I/O} \leq V_{CC_i}$ Output Disabled		- 1	-	1	μA
Output High Voltage	V _{OH}	I _{OH} = -1mA		2.2	-	-	٧
Output Low Voltage	V _{OL}	I _{OL} = 2.1mA		-	-	0.4	V
Operating Power	I _{cc}	Cycle time=min, 100%duty,	55	-	30	45	mΑ
Supply Current		$I/O=0mA$, $\overline{CE}=V_{IL}$;	70	-	25	35	mΑ
			100	-	20	25	mA
Average Operation	Icc1	Cycle time=1µs,100%duty,I/O=0mA,		-	4	5	mΑ
Current		$\overline{\text{CE}} \leq 0.2 \text{V,other pins at } 0.2 \text{V or Vcc-} 0$.2V,				
	lcc2	Cycle time=500ns,100%duty,I/O=0mA	١,	-	8	10	mA
		$\overline{\text{CE}} \leq 0.2 \text{V,other pins at } 0.2 \text{V or Vcc-} 0$.2V,				
Standby Current (TTL)	I _{SB}	$\overline{\text{CE}} = V_{\text{IH,}}$ other pins $= V_{\text{IL}}$ or V_{IH} ,		-	0.3	0.5	mA
Standby Current (CMOS)	I _{SB1}	$\overline{\text{CE}} = V_{\text{CC}} - 0.2V$,	-L	-	20	80	μΑ
		other pins at 0.2V or Vcc-0.2V,	-LL	-	3	25	μΑ

TEL: 886-3-5777882 FAX: 886-3-5777919

CAPACITANCE (TA= 25° C, f=1.0MHz)

PARAMETER	SYMBOL	MIN.	MAX	UNIT
Input Capacitance	Cin	-	6	pF
Input/Output Capacitance	C _{I/O}	-	8	pF

Note: These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

Input Pulse Levels	0V to 3.0V
Input Rise and Fall Times	5ns
Input and Output Timing Reference Levels	1.5V
Output Load	$C_{L} = 30 pF, I_{OH}/I_{OL} = -1 mA / 2 mA$

AC ELECTRICAL CHARACTERISTICS (VCC =2.7V~3.6V, TA = -40 $^{\circ}$ C to 85 $^{\circ}$ C(I))

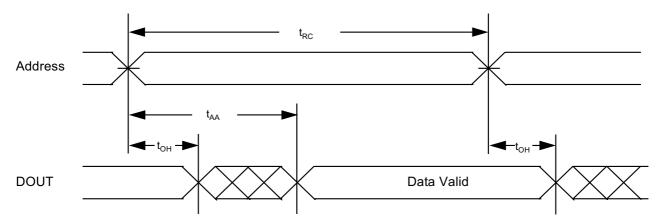
(1) READ CYCLE

PARAMETER	SYMBOL	UT62L12	816(I)-55*	UT62L12	2816(I)-70	UT62L12	816(I)-100	UNIT
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	İ
Read Cycle Time	t _{RC}	55	-	70	-	100	-	ns
Address Access Time	t _{AA}	-	55	-	70	-	100	ns
Chip Enable Access Time	t _{ACE}	-	55	-	70	-	100	ns
Output Enable Access Time	t _{oe}	-	30	-	35	-	50	ns
Chip Enable to Output in Low Z	t _{CLZ*}	10	-	10	-	10	-	ns
Output Enable to Output in Low Z	t _{OLZ*}	5	-	5	-	5	-	ns
Chip Disable to Output in High Z	t _{CHZ*}	-	20	-	25	-	30	ns
Output Disable to Output in High Z	t _{OHZ*}	-	20	-	25	-	30	ns
Output Hold from Address Change	t _{oh}	5	-	5	-	5	-	ns
LB, UB Access Time	t _{BA}	-	55	-	70	-	100	ns
LB, UB to High-Z Output	t _{HZB}	-	25	-	30	-	40	ns
LB, UB to Low-Z Output	t _{LZB}	0	-	0	-	0	-	ns

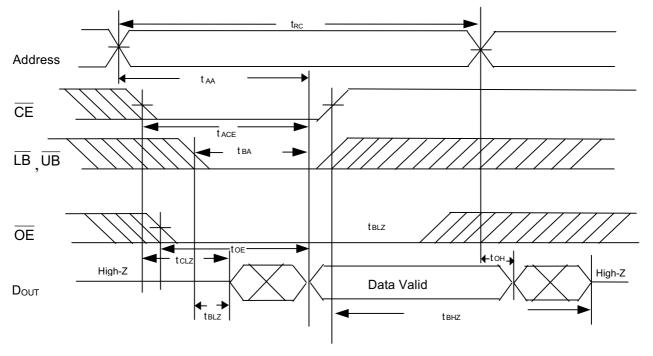
(2) WRITE CYCLE

PARAMETER	SYMBOL	UT62L12	816(I)-55*	UT62L12	816(I)-70	UT62L12	816(I)-100	UNIT
	•	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Write Cycle Time	t _{wc}	55	-	70	-	100	-	ns
Address Valid to End of Write	t _{AW}	50	-	60	-	80	-	ns
Chip Enable to End of Write	t _{cw}	50	-	60	-	80	-	ns
Address Set-up Time	t _{AS}	0	-	0	-	0	-	ns
Write Pulse Width	t _{wP}	45	-	55	-	70	-	ns
Write Recovery Time	t _{wR}	0	-	0	-	0	-	ns
Data to Write Time Overlap	t _{DW}	25	-	30	-	40	-	ns
Data Hold from End of Write Time	t _{DH}	0	-	0	-	0	-	ns
Output Active from End of Write	t _{ow*}	5	-	5	-	5	-	ns
Write to Output in High Z	t _{whz*}	-	30	-	30	-	40	ns
LB, UB Valid to End of Write	t _{PWB}	45	-	60	-	80	-	ns

^{*} These parameters are guaranteed by device characterization, but not production tested.

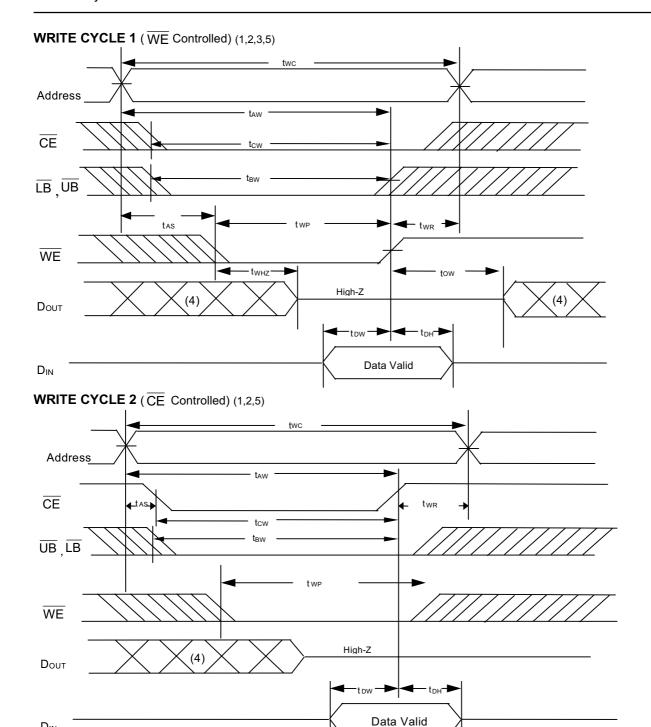

UTRON TECHNOLOGY INC. 1F, No. 11, R&D Rd. II, Science-Based Industrial Park, Hsinchu, Taiwan, R. O. C.

TEL: 886-3-5777882 FAX: 886-3-5777919


^{* 55}ns for Vcc=3.0V~3.6V

TIMING WAVEFORMS

READ CYCLE 1 (Address Controlled) (1,2,4)

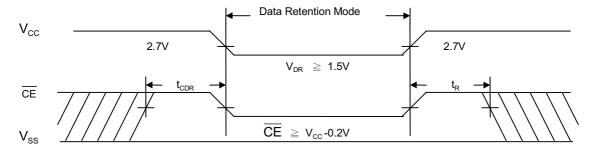

READ CYCLE 2 ($\overline{\text{CE}}$ and $\overline{\text{OE}}$ Controlled) (1,3,5,6)

Notes:

- 1. WE is HIGH for read cycle.
- 2. Device is continuously selected $\overline{CE} = V_{IL}$.
- 3. Address must be valid prior to or coincident with $\overline{\text{CE}}$ transition; otherwise t_{AA} is the limiting parameter.
- 4. \overline{OE} is LOW.
- 5. tclz, tclz, tclz and tolz are specified with Cl = 5pF. Transition is measured \pm 500mV from steady state.
- 6. At any given temperature and voltage condition, t_{CHZ} is less than t_{CLZ} , t_{OHZ} is less than t_{OLZ} .

D_{IN} Notes:

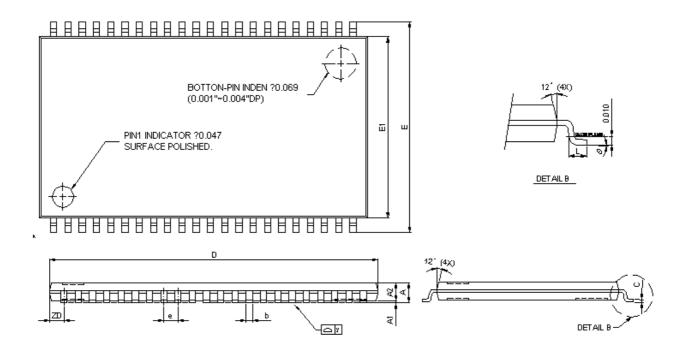
- 1. $\overline{\text{WE}}$ or $\overline{\text{CE}}$ must be HIGH during all address transitions.
- 2. A write occurs during the overlap of a low $\overline{\,\text{CE}\,}$ and a low $\overline{\,\text{WE}\,}$.
- 3. During a WE controlled with write cycle with OE LOW, two must be greater than twhz+tow to allow the drivers to turn off and data to be placed on the bus.
- 4. During this period, I/O pins are in the output state, and input signals must not be applied.
- 5. If the $\overline{\text{CE}}$ LOW transition occurs simultaneously with or after $\overline{\text{WE}}$ LOW transition, the outputs remain in a high impedance state.
- 6. t_{OW} and t_{WHZ} are specified with C_{L} = 5pF. Transition is measured \pm 500mV from steady state.


UTRON TECHNOLOGY INC.

P80049

DATA RETENTION CHARACTERISTICS (TA = -40° to 85°C(I))

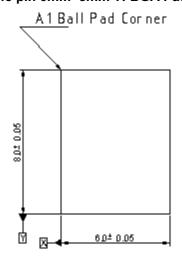
PARAMETER	SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Vcc for Data Retention	V _{DR}	CE ≥ Vcc-0.2V		1.5	-	3.6	V
Data Retention Current	IDR	Vcc=1.5V	- L	-	1	50	μA
		$\overline{\sf CE} \ \ge \ \sf Vcc ext{-}0.2V$	- LL	-	0.5	20	μA
Chip Disable to Data	tcdr	See Data Retention		0	-	-	ms
Retention Time		Waveforms (below)					
Recovery Time	t _R			5	-	-	ms

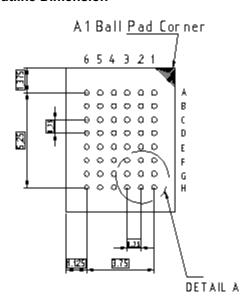

DATA RETENTION WAVEFORM

7

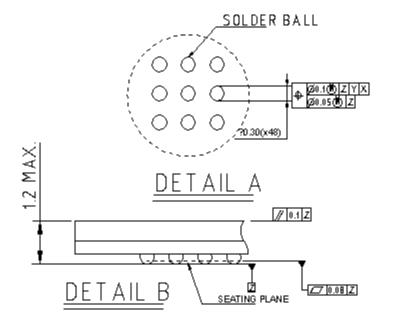
PACKAGE OUTLINE DIMENSION

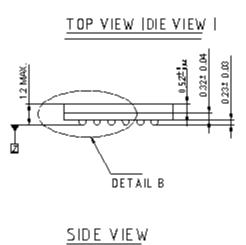
44 pin 400mil TSOP-Ⅱ Package Outline Dimension


- 1.CONTROLLING DIMENSION: INCH
- 2.LEAD FRAME MATERIAL: ALLOY 42
 3.DIMENSION "D" DOES NOT INCLUDE MOLD
 FLASH, THE BAR BURRS AND GATE BURRS.
 MOLD FLASH, TIE BAR BURRS AND GATE BURRS
 SHALL NOT EXCEED 0.006"[0.15mm] PER END
 DIMENSION "E1" DOES NOT INCLUDE INTERLEAD
 FLASH, INTERLEAD FLASH SHALL NOT EXCEED
- 0.010"[0.25mm] PER SIDE.
 4.DIMENSION "b" DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL
 BE 0.003"[0.008mm] TOTAL IN EXCEED OF THE "b"
 DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR
 CANNOT BE LOCATED ON THE LOWER RADIUS OR THE
 FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND AN
- ADJACENT LEAD TO BE 0.0028"[0.07mm] 5.TOLERANCE: 60.010"[0.25mm] UNLESS OTHERWISE SPECIFIED.
- 6.OTHERWISE DIMENSION FOLLOW ACCEPTABLE SPEC.
- 7.REFERENCE DOCUMENT: JEDEC SPEC. MS-024


SYMBOLS	DIMENSIO	ins in Mil	LINETER'S	DIMEN	SIONS IN	INCHES
SIMBULS	MIN	NOM	MAX	MIN	NON	XAM
A	1.00		1.20	0.039		0.047
A1	0.05		0.15	0.002	_	0.00B
A2	0.95	1.00	1.D5	0.037	0.039	0.041
ь	0.30	D.35	0.45	D.012	0.014	0.018
C	0.12	_	0.21	D.0047		0.0083
ם	18.313	18.415	18.517	0.721	0.725	0.729
Ε	11.684	11.836	11.938	0.480	0.466	0.470
E1	10.058	10.160	10.282	0.396	0.400	0.404
ė		D.600		_	0.0315	
L	0.40	0.50	0.60	0.0157	0.020	0.0236
ZD		0.805			0.0317	
ě	O O		8	Œ		6"
ע	0.00		0.D76	0.000		0.003

P80049


48 pin 6mm×8mm TFBGA Package Outline Dimension



TOP VIEW |DIE VIEW |

BOTTOM VIEW | BALL SIDE |

ORDERING INFORMATION

INDUSTRIAL TEMPERATURE

PART NO.	ACCESS TIME (ns)	STANDBY CURRENT (µA) TYP.	PACKAGE
UT62L12816MC-55LI	55	20	44 PIN TSOP-Ⅱ
UT62L12816MC-55LLI	55	3	44 PIN TSOP-Ⅱ
UT62L12816MC-70LI	70	20	44 PIN TSOP-Ⅱ
UT62L12816MC-70LLI	70	3	44 PIN TSOP-Ⅱ
UT62L12816BS-55LI	55	20	48 PIN TFBGA
UT62L12816BS-55LLI	55	3	48 PIN TFBGA
UT62L12816BS-70LI	70	20	48 PIN TFBGA
UT62L12816BS-70LLI	70	3	48 PIN TFBGA

REVISION HISTORY

REVISION	DESCRIPTION	DATE
Preliminary Rev. 0.5	Original.	Mar, 2001
Preliminary Rev. 0.6	1. The symbols CE# and OE# and WE# are revised as. CE	Jun 21,2001
	and OE and WE. 2. Separate Industrial and Consumer SPEC.	
	3. Add access time 55ns range.	

THIS PAGE IS LEFT BLANK INTENTIONALLY.