InGaAs-APD/Preamp Receiver

FRM5N141GW

FEATURES

- Small Form Factor Package(GW): 9 pins coplanar
- Integrated Design Optimizes Performance at Bit Rates up to 12.5Gb/s
- High Sensitivity: -27dBm (typ.)
- Electrical Differential Output
- Wide Bandwidth: 10.5GHz (typ.)
- Operates in both C and L wavelength bands

APPLICATIONS

This APD with HBT preamplifier is intended to function as an optical receiver at 1,310nm or 1,530-1,610nm in SONET, SDH, DWDM or other optical fiber systems operating up to 12.5Gb/s. The typical transimpedance (Zt) value of 1,300 Ω optimizes the total bandwidth for 10Gb/s application. The detector preamplifier is DC coupled and has an electrical differential output.

DESCRIPTION

The FRM5N141GW incorporates a high bandwidth InGaAs APD photo diode, a GaAs HBT IC amplifier in a hermetically sealed Small Form Factor package (SFF). The APD is processed with modern MOVPE techniques resulting in a reliable performance over a wide range of operating conditions. The lens coupling system and the single mode fiber are assembled using Nd YAG welding.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C)

Parameter	Symbol	Ratings	Unit	
Storage Temperature	T _{stg}	-40 to +85	°C	
Operating Temperature	T _{op}	-5 to +75	°C	
Supply Voltage	V _{SS}	-6 to 0	V	
PIN Reverse Voltage	VR	0 to VB(Note)	V	
PIN Reverse Current	I _{R(peak)}	3	mA	

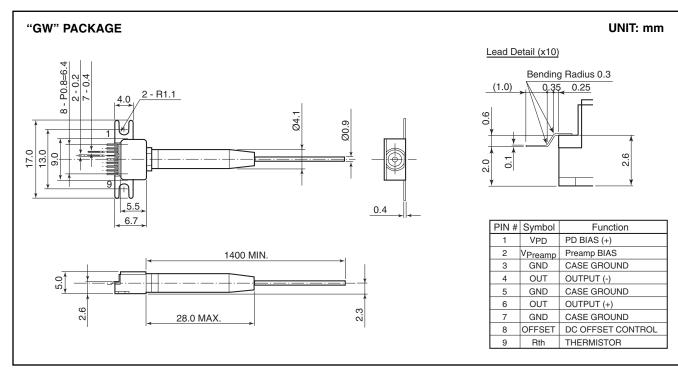
Note: Since VB may vary from device-to-device, VB data is attached to each device for reference.

OPTICAL & ELECTRICAL CHARACTERISTICS

(T_C=25°C, λ =1,550nm, V_{SS}=-5.2V, unless otherwise specified)

Parameter	Symbol			Limits			11
				Min.	Тур.	Max.	ax. Unit
4.D.D	R13	λ = 1,310nm, M=1		0.75	0.85	-	A/W
APD Responsivity	R15 R16	$\lambda = 1,550$ nm, M=1 $\lambda = 1,610$ nm, M=1		0.75 -	0.90 0.80	-	
APD Breakdown Voltage	VB	ID = 10		20.0	25.0	30.0	V
	"5	10 - 10	<i>σ</i> μΑ	20.0	23.0	30.0	V
Temperature Coefficient of VB	γ	Note (1)		0.03	0.05	0.07	V/°C
AC Transimpedance	Z _t	f = 750MHz, Single-end		900	1300	-	Ω
Output Common Voltage	Vout	-		-	-400	-	mV
Maximum Output Voltage Swing	V _{clip}	Saturated Output Voltage		400	600	800	mV
Bandwidth	D144	-3dB from 750MH	z, M=9	8.5	10.5	-	GHz
	BW	Pin=-20dBm	M=3	8.5	10.5		
Lower Cut-off Frequency	fcl	-3dB from 750MHz, Pin=-20dBm		-	40	100	kHz
Peaking	dpk	130MHz to BW, Pin=-20dBm,M=9		-	0.5	1.5	dB
Group Delay Deviation	GD	1GHz to 6GHz, Pin=-20dBm, M=9		-	15	40	- ps _{p-p}
		1GHz to 8GHz, Pin=-20dBm, M=9		-	30	60	
Output Return Loss	S22	130MHz to 6GHz		-	12	-	dB
		130MHz to 8GHz		-	10	_	
Minimum Sensitivity	Pr	10Gb/s, NRZ, 25	°C, Rext=13dB	-	-27.0	-25.0	- dBm
		, , ,	°C, Rext=10dB	-	-26.0	-	
			°C, Rext=8.2dB	-	-25.0	-	
		VR=Optimum 70	°C, Rext=13dB	-	-26.0	-24.0	
Maximum Overload	Po	10Gb/s, NRZ, Re	ext=13dB	-7	-5	-	dBm
		PRBS=2 ³¹ -1, B.E.R.=10 ^{-12,}	ext=10dB	-	-4.5	-	
		M=3 Re	ext=8.2dB	-	-4.0	-	
	0.51	$\lambda = 1,550$ nm		27	-	-	15
Optical Return Loss		ORL $\lambda = 1,310$ nm		27	-	-	- dB
Power Supply Current	I _{SS}	-		-	110	130	mA
Power Supply Voltage	V _{SS}	-		-5.46	-5.20	-4.94	V
Thermistor Resistance	R _{th}	-		9.5	10.0	10.5	kΩ
Thermistor B Constant	В	-		3800	3900	4000	K

Note 1: $\gamma = \Delta VB/dTc$


Note: All the parameters are measured with $50\Omega,$ DC-coupled and 0V output offset.

InGaAs-APD/Preamp Receiver	FRM5N141GW
Notes	

InGaAs-APD/Preamp Receiver

For further information please contact:

FUJITSU COMPOUND SEMICONDUCTOR, INC.

2355 Zanker Rd.

San Jose, CA 95131-1138, U.S.A.

Phone: (408) 232-9500 FAX: (408) 428-9111 www.fcsi.fujitsu.com

FUJITSU QUANTUM DEVICES EUROPE LTD.

Network House Norreys Drive Maidenhead, Berkshire SL6 4FJ United Kingdom

TEL: +44 (0) 1628 504800 FAX: +44 (0) 1628 504888

FUJITSU QUANTUM DEVICES SINGAPORE PTE LTD.

Hong Kong Branch

Rm. 1101, Ocean Centre, 5 Canton Rd. Tsim Sha Tsui,

Kowloon, Hong Kong TEL: +852-23770226 FAX: +852-23763269

CAUTION

Fujitsu Compound Semiconductor Products contain **gallium arsenide (GaAs)** which can be hazardous to the human body and the environment. For safety, observe the following procedures:

- Do not put this product into the mouth.
- Do not alter the form of this product into a gas, powder, or liquid through burning, crushing, or chemical processing as these by-products are dangerous to the human body if inhaled, ingested, or swallowed.
- Observe government laws and company regulations when discarding this product. This product must be discarded in accordance with methods specified by applicable hazardous waste procedures.

FUJITSU QUANTUM DEVICES LIMITED

Business Development Division 11th Floor, Hachioji Daiichi-Seimei Bldg. 3-20-6 Myojin-cho Hachioji-city, Tokyo 192-0046, Japan

TEL: +81-426-43-5885 FAX: +81-426-43-5582

Fujitsu Limited reserves the right to change products and specifications without notice. The information does not convey any license under rights of Fujitsu Limited or others.

© 2002 FUJITSU COMPOUND SEMICONDUCTOR, INC. Printed in U.S.A. FCSI0302M200

