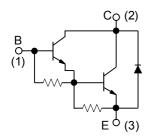
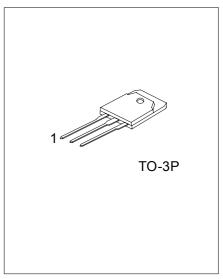


# UNISONIC TECHNOLOGIES CO., LTD

# **BU931Z**

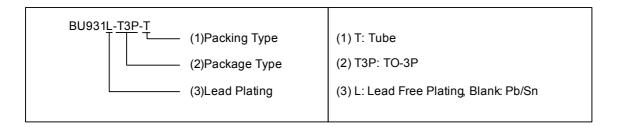

## **NPN SILICON TRANSISTOR**


# NPN POWER DARLINGTON

#### **FEATURES**

- \* High operating junction temperature
- \* High voltage ignition coil driver
- \* Very rugged bipolar technology

#### **INTERNAL SCHEMATIC DIAGRAM**






\*Pb-free plating product number: BU931L

#### **ORDERING INFORMATION**

| Ordering Number |                   | Dookogo | Pin Assignment |   |   | Dooking |  |
|-----------------|-------------------|---------|----------------|---|---|---------|--|
| Normal          | Lead Free Plating | Package | 1              | 2 | 3 | Packing |  |
| BU931-T3P-T     | BU931L-T3P-T      | TO-3P   | В              | С | Е | Tube    |  |



www.unisonic.com.tw 1 of 2 QW-R214-015,A

### ■ ABSOLUTE MAXIMUM RATINGS (Ta=25 )

| PARAMETER                    | SYMBOL            | RATINGS    | UNIT |
|------------------------------|-------------------|------------|------|
| Collector-Emitter Voltage    | BV <sub>CEO</sub> | 350        | V    |
| Emitter-Base Voltage         | BV <sub>EBO</sub> | 5          | V    |
| Collector Current (DC)       | Ic                | 10         | Α    |
| Collector Peak Current       | I <sub>CM</sub>   | 15         | Α    |
| Base Current                 | I <sub>B</sub>    | 1          | Α    |
| Base Peak Current            | I <sub>BM</sub>   | 5          | Α    |
| Total Dissipation (Tc = 25 ) | $P_D$             | 125        | W    |
| Junction Temperature         | TJ                | +175       |      |
| Storage Temperature          | T <sub>STG</sub>  | -65 ~ +175 |      |

#### **■ ELECTRICAL CHARACTERISTICS**

| PARAMETER                               | SYMBOL                                                                        | TEST CONDITIONS                                                             | MIN | TYP | MAX | UNIT |
|-----------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----|-----|-----|------|
| Collector Cut-off Current               | I <sub>CEO</sub>                                                              | V <sub>CE</sub> = 300 V                                                     |     |     | 100 | μΑ   |
| Emitter Cut-off Current                 | I <sub>EBO</sub>                                                              | V <sub>EB</sub> = 5 V                                                       |     |     | 20  | mA   |
|                                         | $V_{CL}$                                                                      | I <sub>C</sub> = 100mA                                                      | 350 |     | 500 | V    |
| Collector Emitter Seturation Voltage    | V <sub>CE(SAT)1</sub>                                                         | I <sub>C</sub> = 7 A, I <sub>B</sub> = 70 mA                                |     |     | 1.6 | V    |
| Collector-Emitter Saturation Voltage    | V <sub>CE(SAT)2</sub>                                                         | I <sub>C</sub> = 8 A, I <sub>B</sub> = 100 mA                               |     |     | 1.8 | V    |
| Dago Emitter Seturation Valtage         | V <sub>BE(SAT)1</sub>                                                         | I <sub>C</sub> = 7 A, I <sub>B</sub> = 70 mA                                |     |     | 2.2 | V    |
| Base-Emitter Saturation Voltage         | V <sub>BE(SAT)2</sub>                                                         | I <sub>C</sub> = 8 A, I <sub>B</sub> = 100 mA                               |     |     | 2.4 | V    |
| DC Current Gain                         | h <sub>FE</sub>                                                               | $V_{CE} = 10 \text{ V}, I_{C} = 5 \text{ A}$                                | 300 |     |     |      |
| Diode Forward Voltage                   | V <sub>F</sub>                                                                | I <sub>F</sub> = 8 A                                                        |     |     | 2.5 | V    |
|                                         | $t_{S}$ $V_{CC} = 12 \text{ V}, V_{clamp} = 300 \text{ V}$ $L = 7 \text{ mH}$ |                                                                             |     | 15  |     | μs   |
| Inductive Load Storage Time / Fall Time | t <sub>F</sub>                                                                | $I_C = 7 \text{ A}, I_B = 70 \text{ mA}$<br>$V_{BE} = 0, R_{BE} = 47\Omega$ |     | 0.5 |     | μs   |

Note: 1. Wafer area should be than 50%

- 2. The quantity of cracked wafers should be less than 10% per shipment.
- $3. \mbox{Auerage}$  yield should be more than 50% per wafer, 80% per shipment.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.