Features

- This Circuit is Processed in Accordance to MIL-STD883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Low Distortion (HD3, 30MHz) -84dBc (Typ)
- Wide -3dB Bandwidth 850MHz (Typ)
- Very High Slew Rate 2300V/ $\mu \mathrm{s}$ (Typ)
- Fast Settling (0.1\%) . 11ns (Typ)
- Excellent Gain Flatness (to 50MHz) 0.05dB (Typ)
- High Output Current

65mA (Typ)

- Fast Overdrive Recovery
<10ns (Typ)

Applications

- Video Switching and Routing
- Pulse and Video Amplifiers
- Wideband Amplifiers
- RF/IF Signal Processing
- Flash A/D Driver
- Medical Imaging Systems

Description

The HFA1100/883 is a high speed, wideband, fast settling current feedback amplifier. Built with Intersil' proprietary, complementary bipolar UHF-1 process, it is the fastest monolithic amplifier available from any semiconductor manufacturer.

The HFA1100/883's wide bandwidth, fast settling characteristic, and low output impedance, make this amplifier ideal for driving fast A / D converters.

Component and composite video systems will also benefit from this amplifier's performance, as indicated by the excellent gain flatness, and 0.03\%/0.05 Deg. Differential Gain/ Phase specifications ($R_{L}=75 \Omega$).

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HFA $1100 \mathrm{MJ} / 883$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 Lead CerDIP

Pinout

HFA1100/883
(CERDIP)
TOP VIEW

Absolute Maximum Rat	
Voltage Between V+ and V-	12 V
Differential Input Voltage	5 V
Voltage at Either Input Terminal.	$V+$ to V-
Output Current (50\% Duty Cycle) .	$\pm 55 \mathrm{~mA}$
Junction Temperature	$+175^{\circ} \mathrm{C}$
ESD Rating.	<2000V
Storage Temperature Range	退 $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 1	$+300^{\circ}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Temperature Range. $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Tested at: $V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=510 \Omega$, $\mathrm{R}_{\text {SOURCE }}=0 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega$, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$, Unless Otherwise Specified.

PARAMETERS	SYMBOL	CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE	LIMITS		UNITS
					MIN	MAX	
Input Offset Voltage	V_{10}	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	-6	6	mV
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-10	10	mV
Common Mode Rejection Ratio	CMRR	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{CM}}= \pm 2 \mathrm{~V} \\ & \mathrm{~V}_{+}=3 \mathrm{~V}, \mathrm{~V}-=-7 \mathrm{~V} \\ & \mathrm{~V}_{+}=7 \mathrm{~V}, \mathrm{~V}-=-3 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	40	-	dB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	38	-	dB
Power Supply Rejection Ratio	PSRRP	$\begin{aligned} & \Delta \mathrm{V}_{\text {SUPPLY }}= \pm 1.25 \mathrm{~V} \\ & \mathrm{~V}+=6.25 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \\ & \mathrm{~V}_{+}=3.75 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	45	-	dB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	42	-	dB
	PSRRN	$\begin{aligned} & \Delta \mathrm{V}_{\text {SUPPLY }}= \pm 1.25 \mathrm{~V} \\ & \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=-6.25 \mathrm{~V} \\ & \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=-3.75 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	45	-	dB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	42	-	dB
Non-Inverting Input (+IN) Current	$\mathrm{I}_{\mathrm{BSP}}$	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	-40	40	$\mu \mathrm{A}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-65	65	$\mu \mathrm{A}$
+IN Current Common Mode Sensitivity	$\mathrm{CMS}_{18 P}$	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{CM}}= \pm 2 \mathrm{~V} \\ & \mathrm{~V}_{+}=3 \mathrm{~V}, \mathrm{~V}-=-7 \mathrm{~V} \\ & \mathrm{~V}_{+}=7 \mathrm{~V}, \mathrm{~V}-=-3 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	40	$\mu \mathrm{A} / \mathrm{V}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	50	$\mu \mathrm{A} / \mathrm{V}$
+IN Resistance	$+\mathrm{R}_{\text {IN }}$	Note 1	1	$+25^{\circ} \mathrm{C}$	25	-	$\mathrm{k} \Omega$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	20	-	$\mathrm{k} \Omega$
Inverting Input (-IN) Current	$\mathrm{I}_{\mathrm{BSN}}$	$\mathrm{V}_{C M}=0 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	-50	50	$\mu \mathrm{A}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-75	75	$\mu \mathrm{A}$
-IN Current Common Mode Sensitivity	$\mathrm{CMS}_{\text {IBN }}$	$\begin{aligned} & \Delta V_{\mathrm{CM}}= \pm 2 \mathrm{~V} \\ & \mathrm{~V}_{+}=3 \mathrm{~V}, \mathrm{~V}-=-7 \mathrm{~V} \\ & \mathrm{~V}_{+}=7 \mathrm{~V}, \mathrm{~V}-=-3 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	7	$\mu \mathrm{A} / \mathrm{V}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	10	$\mu \mathrm{A} / \mathrm{V}$
-IN Current Power Supply Sensitivity	PPSS ${ }_{\text {IBN }}$	$\begin{aligned} & \Delta \mathrm{V}_{\text {SUPPLY }}= \pm 1.25 \mathrm{~V} \\ & \mathrm{~V}+=6.25 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \\ & \mathrm{~V}_{+}=3.75 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	15	$\mu \mathrm{A} / \mathrm{V}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	27	$\mu \mathrm{A} / \mathrm{V}$
	NPSS ${ }_{\text {IBN }}$	$\begin{aligned} & \Delta \mathrm{V}_{\text {SUPPLY }}= \pm 1.25 \mathrm{~V} \\ & \mathrm{~V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=-6.25 \mathrm{~V} \\ & \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=-3.75 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	15	$\mu \mathrm{A} / \mathrm{V}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	27	$\mu \mathrm{A} / \mathrm{V}$
Output Voltage Swing	$\mathrm{V}_{\text {OP100 }}$	$\begin{array}{\|ll} \hline A_{V}=-1 & V_{I N}=-3.5 V \\ R_{L}=100 \Omega & V_{I N}=-3 V \end{array}$	1	$+25^{\circ} \mathrm{C}$	3	-	V
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	2.5	-	V
	$\mathrm{V}_{\text {ON100 }}$	$\begin{array}{ll} \hline A_{V}=-1 & V_{I N}=+3.5 \mathrm{~V} \\ R_{L}=100 \Omega & V_{I N}=+3 V \end{array}$	1	$+25^{\circ} \mathrm{C}$	-	-3	V
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	-2.5	V

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)
Device Tested at: $V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=510 \Omega$, $\mathrm{R}_{\text {SOURCE }}=0 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega$, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$, Unless Otherwise Specified.

PARAMETERS	SYMBOL	CONDITIONS		GROUP A SUBGROUPS	TEMPERATURE	LIMITS		UNITS	
				MIN		MAX			
Output Voltage Swing	$\mathrm{V}_{\text {OP50 }}$	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=-1 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$	$\mathrm{V}_{\text {IN }}=-3 \mathrm{~V}$		1, 2	$+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$	2.5	-	V
			$\mathrm{V}_{\text {IN }}=-2 \mathrm{~V}$	3	$-55^{\circ} \mathrm{C}$	1.5	-	V	
	$\mathrm{V}_{\text {ON50 }}$	$\begin{aligned} & \hline A_{V}=-1 \\ & R_{L}=50 \Omega \end{aligned}$	$\mathrm{V}_{\text {IN }}=+3 \mathrm{~V}$	1, 2	$+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$	-	-2.5	V	
			$\mathrm{V}_{\text {IN }}=+2 \mathrm{~V}$	3	$-55^{\circ} \mathrm{C}$	-	-1.5	V	
Output Current	+lout	Note 2		1, 2	$+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$	50	-	mA	
				3	$-55^{\circ} \mathrm{C}$	30	-	mA	
	- ${ }_{\text {OUT }}$	Note 2		1, 2	$+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$	-	-50	mA	
				3	$-55^{\circ} \mathrm{C}$	-	-30	mA	
Quiescent Power Supply Current	I_{CC}	$\mathrm{R}_{\mathrm{L}}=100 \Omega$		1	$+25^{\circ} \mathrm{C}$	14	26	mA	
				2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	33	mA	
	I_{EE}	$\mathrm{R}_{\mathrm{L}}=100 \Omega$		1	$+25^{\circ} \mathrm{C}$	-26	-14	mA	
				2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-33	-	mA	

NOTES:

1. Guaranteed from + IN Common Mode Rejection Test, by: $+\mathrm{R}_{\mathbb{I N}}=1 / \mathrm{CMS}_{\text {IBP }}$.
2. Guaranteed from $\mathrm{V}_{\text {OUT }}$ Test with $\mathrm{R}_{\mathrm{L}}=50 \Omega$, by: $\mathrm{I}_{\text {OUT }}=\mathrm{V}_{\mathrm{OUT}} / 50 \Omega$.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS
Table 2 Intentionally Left Blank. See AC Specifications in Table 3

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Characterized at: $V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+2, \mathrm{R}_{\mathrm{F}}=360 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega$, Unless Otherwise Specified.

PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	LIMITS		UNITS
					MIN	MAX	
-3dB Bandwidth	BW(-1)	$\begin{aligned} & A_{V}=-1, R_{F}=430 \Omega \\ & V_{\text {OUT }}=200 \mathrm{mV} V_{P-P} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	300	-	MHz
	BW(+1)	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=510 \Omega \\ & \mathrm{~V}_{\text {OUT }}=200 \mathrm{mV} \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	550	-	MHz
	BW(+2)	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=+2, \\ & \mathrm{~V}_{\text {OUT }}=200 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	350	-	MHz
Gain Flatness	GF30	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=+2, \quad \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{f} \leq 30 \mathrm{MHz} \\ & \mathrm{~V}_{\text {OUT }}=200 \mathrm{mV}_{\mathrm{P}-\mathrm{P}} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	± 0.04	dB
	GF50	$\begin{aligned} & A_{V}=+2, R_{F}=510 \Omega, f \leq 50 \mathrm{MHz} \\ & V_{\text {OUT }}=200 \mathrm{mV} V_{P-P} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	± 0.10	dB
	GF100	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=+2, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{f} \leq 100 \mathrm{MHz} \\ & \mathrm{~V}_{\text {OUT }}=200 \mathrm{mV} \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	± 0.30	dB

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Characterized at: $V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+2, R_{F}=360 \Omega, R_{L}=100 \Omega$, Unless Otherwise Specified.

PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	LIMITS		UNITS
					MIN	MAX	
Slew Rate	+SR(+1)	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}_{\mathrm{P}} . \\ & \mathrm{P} \end{aligned}$	1, 2	$+25^{\circ} \mathrm{C}$	1200	-	V/us
	-SR(+1)	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}_{\mathrm{P}} \\ & \mathrm{P} \end{aligned}$	1, 2	$+25^{\circ} \mathrm{C}$	1100	-	V/us
	+SR(+2)	$\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}_{\text {P-P }}$	1, 2	$+25^{\circ} \mathrm{C}$	1650	-	V/us
	-SR(+2)	$\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}_{\text {P-P }}$	1, 2	$+25^{\circ} \mathrm{C}$	1500	-	V/us
Rise and Fall Time	T_{R}	$\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	1, 2	$+25^{\circ} \mathrm{C}$	-	1	ns
	T_{F}	$\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	1, 2	$+25^{\circ} \mathrm{C}$	-	1	ns
Overshoot	+OS	$\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	1, 3	$+25^{\circ} \mathrm{C}$	-	25	\%
	-OS	$\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	1, 3	$+25^{\circ} \mathrm{C}$	-	20	\%
Settling Time	TS(0.1)	$\begin{aligned} & A_{V}=+2, R_{F}=510 \Omega \\ & V_{\text {OUT }}=2 V \text { to } 0 V \text {, to } 0.1 \% \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	20	ns
	TS(0.05)	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=+2, \mathrm{R}_{\mathrm{F}}=510 \Omega \\ & \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V} \text { to } 0 \mathrm{~V} \text {, to } 0.05 \% \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	33	ns
2nd Harmonic Distortion	HD2(30)	$\begin{aligned} & A_{V}=+2, f=30 \mathrm{MHz}, V_{\text {OUT }}=2 \mathrm{~V}_{\mathrm{P}} \\ & P \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	-48	dBc
	HD2(50)	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=+2, \mathrm{f}=50 \mathrm{MHz}, \mathrm{~V}_{\mathrm{OUT}}=2 \mathrm{~V}_{\mathrm{P}} . \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	-45	dBc
	HD2(100)	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=+2, \mathrm{f}=100 \mathrm{MHz}, \\ & \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P- }} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	-35	dBc
3rd Harmonic Distortion	HD3(30)	$\mathrm{A}_{\mathrm{V}}=+2, \mathrm{f}=30 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$	1	$+25^{\circ} \mathrm{C}$	-	-65	dBc
	HD3(50)	$\begin{aligned} & A_{V}=+2, f=50 \mathrm{MHz}, V_{\text {OUT }}=2 \mathrm{~V}_{\mathrm{P}} \\ & \mathrm{P} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	-60	dBc
	HD3(100)	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=+2, \mathrm{f}=100 \mathrm{MHz}, \\ & \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	-40	dBc

NOTES:

1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot-to-lot and within lot variation.
2. Measured between 10% and 90% points.
3. For 200ps input transition times. Overshoot decreases as input transition times increase, especially for $A_{V}=+1$. Please refer to Performance Curves.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1 (Note 1), 2, 3
Group A Test Requirements	$1,2,3$
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

$63 \times 44 \times 19$ mils ± 1 mils
$1600 \mu \mathrm{~m} \times 1130 \mu \mathrm{~m} \times 483 \mu \mathrm{~m} \pm 25.4 \mu \mathrm{~m}$
METALLIZATION:
Type: Metal 1: $\mathrm{AICu}(2 \%) / T i W$. Type: $\operatorname{Metal} 2: \mathrm{AICu}(2 \%)$ 。
Thickness: Metal 1: $8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA \quad$ Thickness: Metal 2: $16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA$
GLASSIVATION:
Type: Nitride
Thickness: $4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$2.0 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$ at 47.5 mA
TRANSISTOR COUNT: 52
SUBSTRATE POTENTIAL (Powered Up): Floating (Recommend Connection to V-)

Metallization Mask Layout

Test Circuit (Applies to Table 1)

Test Waveforms

SIMPLIFIED TEST CIRCUIT FOR LARGE AND SMALL SIGNAL PULSE RESPONSE (Applies to Table 3)

$$
A_{V}=+1 \text { TEST CIRCUIT }
$$

NOTE:

1. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, A_{\mathrm{V}}=+1$
2. $R_{S}=50 \Omega$
3. $R_{L}=100 \Omega$ For Small and Large Signals
$A_{V}=+2$ TEST CIRCUIT

NOTE:

1. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+2$
2. $R_{S}=50 \Omega$
3. $R_{L}=100 \Omega$ For Small and Large Signals

LARGE SIGNAL WAVEFORM

SMALL SIGNAL WAVEFORM

Burn-In Circuit

NOTES:

1. $R 1=R 2=1 \mathrm{k} \Omega, \pm 5 \%$ (Per Socket)
2. $\mathrm{R} 3=10 \mathrm{k} \Omega, \pm 5 \%$ (Per Socket)
3. $\mathrm{C} 1=\mathrm{C} 2=0.01 \mu \mathrm{~F}$ (Per Socket) or $0.1 \mu \mathrm{~F}$ (Per Row) Minimum
4. D1 = D2 $=1$ N4002 or Equivalent (Per Board)
5. $\mathrm{D} 3=\mathrm{D} 4=1 \mathrm{~N} 4002$ or Equivalent (Per Socket)
6. $\mathrm{V}+=+5.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$
7. $V-=-5.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Packaging

F8．3A MIL－STD－1835 GDIP1－T8（D－4，CONFIGURATION A） 8 LEAD DUAL－IN－LINE FRIT－SEAL CERAMIC PACKAGE						
凸凸凸凸囚 BASE ${ }^{\text {（c）}}$	SYMBOL	INCHES		MILLIMETERS		NOTES
$\uparrow E \sim$ METAL		MIN	MAX	MIN	MAX	
	A	－	0.200	－	5.08	－
－B－	b	0.014	0.026	0.36	0.66	2
	b1	0.014	0.023	0.36	0.58	3
	b2	0.045	0.065	1.14	1.65	－
－$\quad \rightarrow 1$	b3	0.023	0.045	0.58	1.14	4
BLANE \square	C	0.008	0.018	0.20	0.46	2
	C1	0.008	0.015	0.20	0.38	3
	D	－	0.405	－	10.29	5
	E	0.220	0.310	5.59	7.87	5
$\mathrm{b} 2 \rightarrow\|\leftarrow\| \xrightarrow{\text { A }} \rightarrow \mid \leftarrow$	e	0．100 BSC		2.54 BSC		－
$b \rightarrow 40$	eA	0．300 BSC		7．62 BSC		－
	eA／2	0．150 BSC		3．81 BSC		－
	L	0.125	0.200	3.18	5.08	－
NOTES：	Q	0.015	0.060	0.38	1.52	6
1．Index area：A notch or a pin one identification mark shall be locat－ ed adjacent to pin one and shall be located within the shaded area shown．The manufacturer＇s identification shall not be used as a pin one identification mark．	S1	0.005	－	0.13	－	7
	S2	0.005	－	0.13	－	－
	α	90°	105°	90°	105°	－
	aaa	－	0.015	－	0.38	－
2．The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces，when solder dip or tin plate lead finish is applied．	bbb	－	0.030	－	0.76	－
	CCC	－	0.010	－	0.25	－
	M	－	0.0015	－	0.038	2
3．Dimensions b1 and c1 apply to lead base metal only．Dimension M applies to lead plating and finish thickness．	N	8		8		8

F8．3A MIL－STD－1835 GDIP1－T8（D－4，CONFIGURATION A） 8 LEAD DUAL－IN－LINE FRIT－SEAL CERAMIC PACKAGE
partial lead paddle．For this configuration dimension b3 replaces dimension b1．

5．This dimension allows for off－center lid，meniscus，and glass
overrun．
6．Dimension Q shall be measured from the seating plane to the
base plane．
7．Measure dimension S1 at all four corners．
8． N is the maximum number of terminal positions．
9．Dimensioning and tolerancing per ANSI Y14．5M－1982．
10．Controlling Dimension：Inch．
11．Lead Finish：Type A．
12．Materials：Compliant to MIL－I－38535．

4．Corner leads（ $1, N, N / 2$ ，and $N / 2+1$ ）may be configured with a

Ultra High Speed Current Feedback Amplifier

The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied.
Typical Performance Curves $\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

LARGE SIGNAL PULSE RESPONSE ($\mathrm{A}_{\mathbf{V}}=\boldsymbol{+} \mathbf{2}$)

DESIGN INFORMATION (Continued)

The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied.

Typical Performance Curves $\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS

$$
\left(A_{V}=+1, V_{\text {OUT }}=200 \mathrm{mV} V_{\text {P-P }}\right)
$$

FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES ($A_{V}=+1$)

FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES
$\left(A_{V}=+6\right)$

FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS
($\left.A_{V}=+2, V_{\text {OUT }}=200 \mathrm{mV} V_{\text {P-P }}\right)$

FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES ($A_{V}=+2$)

-3 dB BANDWIDTH vs TEMPERATURE ($\mathrm{A}_{\mathrm{V}}=+\mathbf{1}$)

DESIGN INFORMATION (Continued)

The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied.

Typical Performance Curves $\mathrm{V}_{\text {SuppLY }}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

DESIGN INFORMATION (Continued)

The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied.
Typical Performance Curves $\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

OVERSHOOT vs FEEDBACK RESISTOR $\left(A_{V}=+2, t_{R}=200 \mathrm{ps}, V_{\text {OUT }}=2 V_{P-P}\right)$

SUPPLY CURRENT vs SUPPLY VOLTAGE

OVERSHOOT vs INPUT RISE TIME ($\mathrm{A}_{\mathrm{V}}=+2$)

SUPPLY CURRENT vs TEMPERATURE

DESIGN INFORMATION (Continued)

The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied.

Typical Performance Curves $\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified OUTPUT VOLTAGE vs TEMPERATURE
$\left(A_{V}=-1, R_{L}=50 \Omega\right)$

INPUT NOISE vs FREQUENCY

Application Information

Optimum Feedback Resistor

The enclosed plots of inverting and non-inverting frequency response illustrate the performance of the HFA1100 in various gains. Although the bandwidth dependency on closed loop gain isn't as severe as that of a voltage feedback amplifier, there can be an appreciable decrease in bandwidth at higher gains. This decrease may be minimized by taking advantage of the current feedback amplifier's unique relationship between bandwidth and R_{F}. All current feedback amplifiers require a feedback resistor, even for unity gain applications, and R_{F}, in conjunction with the internal compensation capacitor, sets the dominant pole of the frequency response. Thus, the amplifier's bandwidth is inversely proportional to R_{F}. The HFA1100 design is optimized for a $510 \Omega \mathrm{R}_{\mathrm{F}}$ at a gain of +1 . Decreasing R_{F} in a unity gain application decreases stability, resulting in excessive peaking and overshoot. At higher gains the amplifier is more stable, so R_{F} can be decreased in a trade-off of stability for bandwidth.

The table below lists recommended R_{F} values for various gains, and the expected bandwidth.

GAIN $\left(\mathbf{A}_{\mathbf{C L}}\right)$	$\mathbf{R}_{\mathbf{F}}(\Omega)$	BANDWIDTH $(\mathbf{M H z})$
-1	430	580
+1	510	850
+2	360	670
+5	150	520
+10	270	240
+19		125

PC Board Layout

The frequency response of this amplifier depends greatly on the amount of care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!

Attention should be given to decoupling the power supplies. A large value $(10 \mu \mathrm{~F})$ tantalum in parallel with a small value $(0.1 \mu \mathrm{~F})$ chip capacitor works well in most cases.

DESIGN INFORMATION (Continued)

The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied.

Terminated microstrip signal lines are recommended at the input and output of the device. Capacitance directly on the output must be minimized, or isolated as discussed in the next section.

Care must also be taken to minimize the capacitance to ground seen by the amplifier's inverting input (-IN). The larger this capacitance, the worse the gain peaking, resulting in pulse overshoot and possible instability. To this end, it is recommended that the ground plane be removed under traces connected to -IN, and connections to -IN should be kept as short as possible.
An example of a good high frequency layout is the Evaluation Board shown in Figure 2.

Driving Capacitive Loads

Capacitive loads, such as an A/D input, or an improperly terminated transmission line will degrade the amplifier's phase margin resulting in frequency response peaking and possible oscillations. In most cases, the oscillation can be avoided by placing a resistor $\left(\mathrm{R}_{\mathrm{S}}\right)$ in series with the output prior to the capacitance.

Figure 1 details starting points for the selection of this resistor. The points on the curve indicate the R_{S} and C_{L} combinations for the optimum bandwidth, stability, and settling time, but experimental fine tuning is recommended. Picking a point above or to the right of the curve yields an overdamped response, while points below or left of the curve indicate areas of underdamped performance.
R_{S} and C_{L} form a low pass network at the output, thus limiting system bandwidth well below the amplifier bandwidth of 850 MHz . By decreasing R_{S} as C_{L} increases (as illustrated in the curves), the maximum bandwidth is obtained without sacrificing stability. Even so, bandwidth does decrease as you move to the right along the curve. For example, at $A_{V}=+1, R_{S}=50 \Omega, C_{L}=30 \mathrm{pF}$, the overall bandwidth is limited to 300 MHz , and bandwidth drops to 100 MHz at $A_{V}=+1, R_{S}=5 \Omega, C_{L}=340 \mathrm{pF}$.

FIGURE 1. RECOMMENDED SERIES OUTPUT RESISTOR vs LOAD CAPACITANCE

Evaluation Board

The performance of the HFA1100 may be evaluated using the HFA11XX Evaluation Board.

The layout and schematic of the board are shown in Figure 2. To order evaluation boards, please contact your local sales office.

FIGURE 2. EVALUATION BOARD SCHEMATIC AND LAYOUT

HFA1100

DESIGN INFORMATION (Continued)

The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied.

TYPICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=360 \Omega, \mathrm{~A}_{\mathrm{V}}=+2 \mathrm{~V} / \mathrm{V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$, Unless Otherwise Specified

PARAMETERS	CONDITIONS	TEMPERATURE	TYPICAL	UNITS
Input Offset Voltage *	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	2	mV
Average Offset Voltage Drift	Versus Temperature	Full	10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
V_{10} CMRR	$\Delta \mathrm{V}_{\mathrm{CM}}= \pm 2 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	46	dB
V_{10} PSRR	$\Delta \mathrm{V}_{\text {S }}= \pm 1.25 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	50	dB
+Input Current *	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	25	$\mu \mathrm{A}$
Average + Input Current Drift	Versus Temperature	Full	40	$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
- Input Current *	$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	12	$\mu \mathrm{A}$
Average -Input Current Drift	Versus Temperature	Full	40	$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
+Input Resistance	$\Delta \mathrm{V}_{\mathrm{CM}}= \pm 2 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	50	$\mathrm{k} \Omega$
- Input Resistance		$+25^{\circ} \mathrm{C}$	16	Ω
Input Capacitance		$+25^{\circ} \mathrm{C}$	2.2	pF
Input Noise Voltage *	$\mathrm{f}=100 \mathrm{kHz}$	$+25^{\circ} \mathrm{C}$	4	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
+Input Noise Current *	$\mathrm{f}=100 \mathrm{kHz}$	$+25^{\circ} \mathrm{C}$	18	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
-Input Noise Current *	$\mathrm{f}=100 \mathrm{kHz}$	$+25^{\circ} \mathrm{C}$	21	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Input Common Mode Range		Full	± 3.0	V
Open Loop Transimpedance	$A_{V}=-1$	$+25^{\circ} \mathrm{C}$	500	k ת
Output Voltage	$A_{V}=-1, R_{L}=100 \Omega$	$+25^{\circ} \mathrm{C}$	± 3.3	V
	$A_{V}=-1, R_{L}=100 \Omega$	Full	± 3.0	V
Output Current *	$A_{V}=-1, R_{L}=50 \Omega$	$+25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	± 65	mA
	$A_{V}=-1, R_{L}=50 \Omega$	$-55^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$	± 50	mA
DC Closed Loop Output Resistance		$+25^{\circ} \mathrm{C}$	0.1	Ω
Quiescent Supply Current *	$\mathrm{R}_{\mathrm{L}}=$ Open	Full	24	mA
-3dB Bandwidth *	$A_{V}=-1, R_{F}=430 \Omega, V_{\text {OUT }}=200 \mathrm{mV} \mathrm{V}_{\text {P-P }}$	$+25^{\circ} \mathrm{C}$	580	MHz
	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{~V}_{\text {OUT }}=200 \mathrm{mV} \mathrm{~V}_{\mathrm{P}} \\ & \mathrm{P} \end{aligned}$	$+25^{\circ} \mathrm{C}$	850	MHz
	$\begin{aligned} & A_{V}=+2, R_{F}=360 \Omega, V_{\text {OUT }}=200 \mathrm{mV} V_{P-} \\ & P \end{aligned}$	$+25^{\circ} \mathrm{C}$	670	MHz
Slew Rate	$\mathrm{A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}_{\text {P-P }}$	$+25^{\circ} \mathrm{C}$	1500	V/us
	$\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}_{\text {P-P }}$	$+25^{\circ} \mathrm{C}$	2300	V/us
Full Power Bandwidth	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}_{\text {P-P }}$	$+25^{\circ} \mathrm{C}$	220	MHz
Gain Flatness *	To $30 \mathrm{MHz}, \mathrm{R}_{\mathrm{F}}=510 \Omega$	$+25^{\circ} \mathrm{C}$	± 0.014	dB
	To $50 \mathrm{MHz}, \mathrm{R}_{\mathrm{F}}=510 \Omega$	$+25^{\circ} \mathrm{C}$	± 0.05	dB
	To $100 \mathrm{MHz}, \mathrm{R}_{\mathrm{F}}=510 \Omega$	$+25^{\circ} \mathrm{C}$	± 0.14	dB
Linear Phase Deviation *	To $100 \mathrm{MHz}, \mathrm{R}_{\mathrm{F}}=510 \Omega$	$+25^{\circ} \mathrm{C}$	± 0.6	Degrees

DESIGN INFORMATION (Continued)

The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied.

TYPICAL PERFORMANCE CHARACTERISTICS

Device Characterized at: $\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=360 \Omega, \mathrm{~A}_{\mathrm{V}}=+2 \mathrm{~V} / \mathrm{V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$, Unless Otherwise Specified

PARAMETERS	CONDITIONS	TEMPERATURE	TYPICAL	UNITS
2nd Harmonic Distortion *	$30 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$	$+25^{\circ} \mathrm{C}$	-55	dBc
	$50 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$	$+25^{\circ} \mathrm{C}$	-49	dBc
	$100 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$	$+25^{\circ} \mathrm{C}$	-44	dBc
3rd Harmonic Distortion *	$30 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	$+25^{\circ} \mathrm{C}$	-84	dBc
	$50 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$	$+25^{\circ} \mathrm{C}$	-70	dBc
	$100 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$	$+25^{\circ} \mathrm{C}$	-57	dBc
3rd Order Intercept *	$100 \mathrm{MHz}, \mathrm{R}_{\mathrm{F}}=510 \Omega$	$+25^{\circ} \mathrm{C}$	30	dBm
1dB Compression	100 MHz , $\mathrm{R}_{\mathrm{F}}=510 \Omega$	$+25^{\circ} \mathrm{C}$	20	dBm
Reverse Isolation (S_{12})	$40 \mathrm{MHz}, \mathrm{R}_{\mathrm{F}}=510 \Omega$	$+25^{\circ} \mathrm{C}$	-70	dB
	$100 \mathrm{MHz}, \mathrm{R}_{\mathrm{F}}=510 \Omega$	$+25^{\circ} \mathrm{C}$	-60	dB
	600 MHz , $\mathrm{R}_{\mathrm{F}}=510 \Omega$	$+25^{\circ} \mathrm{C}$	-32	dB
Rise \& Fall Time	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}_{\text {P-P }}$	$+25^{\circ} \mathrm{C}$	500	ps
	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$	$+25^{\circ} \mathrm{C}$	800	ps
Overshoot *	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \operatorname{Input} \mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}=550 \mathrm{ps}$	$+25^{\circ} \mathrm{C}$	11	\%
Settling Time *	To $0.1 \%, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}$ to $0 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=510 \Omega$	$+25^{\circ} \mathrm{C}$	11	ns
	$\begin{aligned} & \text { To } 0.05 \%, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V} \text { to } 0 \mathrm{~V} \text {, } \\ & \mathrm{R}_{\mathrm{F}}=510 \Omega \end{aligned}$	$+25^{\circ} \mathrm{C}$	19	ns
	$\begin{aligned} & \text { To } 0.02 \%, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V} \text { to } 0 \mathrm{~V} \text {, } \\ & \mathrm{R}_{\mathrm{F}}=510 \Omega \end{aligned}$	$+25^{\circ} \mathrm{C}$	34	ns
Differential Gain	$\mathrm{A}_{\mathrm{V}}=+2, \mathrm{R}_{\mathrm{L}}=75 \Omega$, NTSC	$+25^{\circ} \mathrm{C}$	0.03	\%
Differential Phase	$\mathrm{A}_{\mathrm{V}}=+2, \mathrm{R}_{\mathrm{L}}=75 \Omega$, NTSC	$+25^{\circ} \mathrm{C}$	0.05	Degrees
Overdrive Recovery Time	$\mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	$+25^{\circ} \mathrm{C}$	7.5	ns

* See Typical Performance Curves for more information.

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

