

### PWM/PFM DUAL-MODE STEP-DOWN SWITCHING REGULATOR

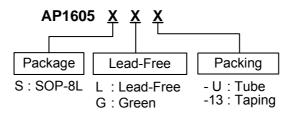
### **Features**

- Low current consumption: In operation: 100µA max. Power off: 2µA max.
- Input voltage: 2.5V to 7V Adjustable version (<u>+</u>2.5%)
- PWM/PFM dual Mode
- Oscillation frequency: 300KHz (Typ.)
- With a power-off function.
- Built-in internal SW P-channel MOS
- Lead Free and Green Package: SOP-8L
- Lead Free Finish/RoHS Compliant (Note 1)

## **General Description**

AP1605 consists of CMOS step-down switching regulator with PWM/PFM dual mode control. These devices include a reference voltage source, oscillation circuit, error amplifier, internal PMOS and etc.

**AP1605** 


AP1605 provides low-ripple power, high efficiency, and excellent transient characteristics. The PWM/PFM control circuit is able to vary the duty ratio linearly 0%~0.25% (PFM) and 25%~100% (PWM).

With the addition of an internal P-channel Power MOS, a coil, capacitors, and a diode connected externally, these ICs can function as step-down switching regulators. They serve as ideal power supply units for portable devices when coupled with the SOP–8L mini-package, providing such outstanding features as low current consumption. Since this converter can accommodate an input voltage of up to 7V, it is also ideal when operating via an AC adapter.

# **Applications**

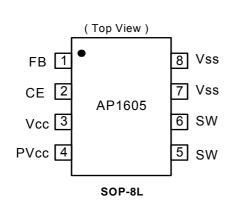
- On-board power supply of battery devices for portable telephones, electronic notebooks, PDA, and other hand-held sets
- Power supplies for audio equipment, including portable CD players and headphone stereo equipment
- Fixed voltage power supply for cameras, video equipment and communications equipment
- Power supplies for microcomputers.
- Conversion from four Ni-H or Ni-Cd cells or
   ture lithium ice cells to 2, 21/(2)/
- two lithium-ion cells to 3.3V/3V
  Conversion of AC adapter input to 5V/3V

# **Ordering Information**



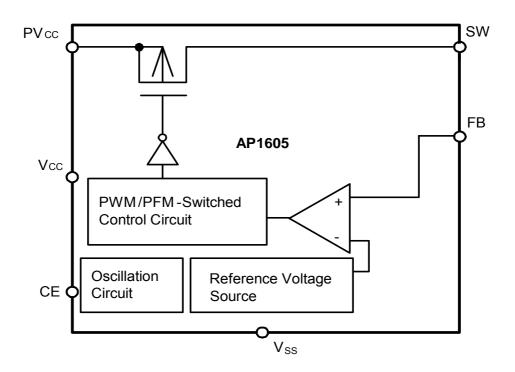
Note: 1. RoHS revision 13.2.2003. Glass and High Temperature Solder Exemptions Applied, see EU Directive Annex Notes 5 and 7.

|            | Device   | evice Package Package |           | Tube     |                       | 13" Tape and Reel |                       |
|------------|----------|-----------------------|-----------|----------|-----------------------|-------------------|-----------------------|
|            | (Note 2) | Code                  | Packaging | Quantity | Part Number<br>Suffix | Quantity          | Part Number<br>Suffix |
| <b>B</b> , | AP1605S  | S                     | SOP-8L    | 100      | -U                    | 2500/Tape & Reel  | -13                   |


Note: 2. Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.



### PWM/PFM DUAL-MODE STEP-DOWN SWITCHING REGULATOR


# **Pin Assignments**

# **Pin Descriptions**



| Pin  | Pin No. | Description                       |  |
|------|---------|-----------------------------------|--|
| Name | SOP     |                                   |  |
| FB   | 1       | Feedback pin                      |  |
|      | 2       | Chip Enable:                      |  |
| CE   |         | H: Enable                         |  |
|      |         | L: Disable                        |  |
|      | 3       | IC signal power supply pin,       |  |
| Vcc  |         | add a $10\Omega$ resistor to PVcc |  |
|      |         | and a 0.1µF capacitor to          |  |
|      |         | GND.                              |  |
| PVcc | 4       | IC power supply pin               |  |
|      | 5, 6    | Switch Pin. Connect               |  |
| SW   |         | external inductor/diode           |  |
| 300  |         | here. Minimize trace area at      |  |
|      |         | this pin to reduce EMI.           |  |
| Vss  | 7, 8    | GND Pin                           |  |

# **Block Diagram**







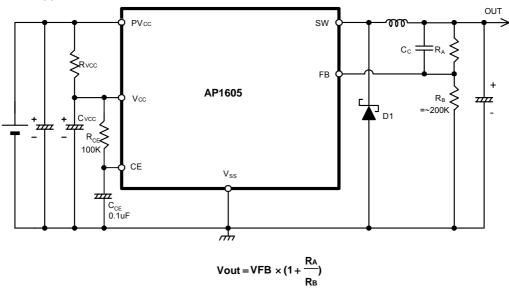
# PWM/PFM DUAL-MODE STEP-DOWN SWITCHING REGULATOR

# **Absolute Maximum Ratings**

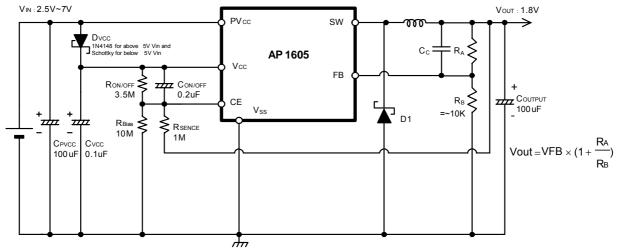
| Symbol           | Parameter                    | Rating                                   | Unit |
|------------------|------------------------------|------------------------------------------|------|
| V <sub>CC</sub>  | V <sub>CC</sub> Pin Voltage  | $V_{\rm SS}$ - 0.3 to $V_{\rm SS}$ + 8   | V    |
| $PV_{CC}$        | PV <sub>CC</sub> Pin Voltage | $V_{\rm SS}$ - 0.3 to $V_{\rm SS}$ + 8   | V    |
| FB               | FB Pin Voltage               | $V_{\rm SS}$ - 0.3 to $V_{\rm SS}$ + 8   | V    |
| $V_{CE}$         | ON/OFF Pin Voltage           | $V_{\rm SS}$ - 0.3 to $V_{\rm SS}$ + 8   | V    |
| $V_{SW}$         | Switch Pin Voltage           | $V_{\rm SS}$ - 0.3 to $V_{\rm IN}$ + 0.3 | V    |
| P <sub>D</sub>   | Power Dissipation            | 1200                                     | mW   |
| T <sub>OPR</sub> | Operating Temperature Range  | -20 to +85                               | °C   |
| T <sub>STG</sub> | Storage Temperature Range    | -20 to +125                              | °C   |

Caution: The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

### **Electrical Characteristics** ( $V_{IN} = 5V$ , $T_A = 25^{\circ}C$ , unless otherwise specified)


| Symbol            | Parameter                                  | Conditions                                                          | Min.   | Тур. | Max.   | Unit |
|-------------------|--------------------------------------------|---------------------------------------------------------------------|--------|------|--------|------|
| V <sub>IN</sub>   | Input Voltage                              | AP1605 Series                                                       | 2.5    |      | 7      | V    |
| $V_{REF}$         | Internal Reference Voltage                 |                                                                     | 1.1625 | 1.2  | 1.2375 | V    |
| $V_{UVLO}$        | UVLO Voltage                               | Voltage required to maintain $V_{\text{OUT}}$                       |        |      | 2.2    | V    |
| MAXDTY            | Maximum Duty Ratio                         |                                                                     | 100    |      |        | %    |
| PFMDTY            | PFM Duty Ratio                             |                                                                     | 15     | 25   | 35     | %    |
| I <sub>SW</sub>   | Switch Current                             | Duty = 50%                                                          | 3      |      |        | А    |
| I <sub>SS</sub>   | Current Consumption<br>POWER <sub>ON</sub> | V <sub>OUT</sub> = 2.5V                                             |        | 35   | 100    | μA   |
| I <sub>SSS</sub>  | Current Consumption During Power Off       | V <sub>ON/OFF</sub> = 0V                                            |        |      | 2      | μA   |
| $\Delta V_{OUT1}$ | Line Regulation                            | 2.5V~7V @ I <sub>OUT</sub> = 0.1A                                   |        | 0.2  | 0.5    | %    |
| $\Delta V_{OUT2}$ | Load Regulation                            | 0.1A~3A                                                             |        | 1    | 1.5    | %    |
| Fosc              | Oscillation Frequency                      |                                                                     | 220    | 300  | 380    | KHz  |
| $V_{CEH}$         | CE Pin "High" Voltage                      | Evaluate oscillation at SW pin                                      | 0.65   |      |        |      |
| V <sub>CEL</sub>  | CE Pin "Low" Voltage                       | Evaluate oscillation stop at SW pin                                 |        |      | 0.2    | *Vcc |
| I <sub>SH</sub>   | Power-Off Pin Input                        |                                                                     | -0.1   |      | 0.1    | μA   |
| I <sub>SL</sub>   | Leakage Current                            |                                                                     | -0.1   |      | 0.1    | μA   |
| EFFI              | Efficiency                                 | V <sub>IN</sub> = 5V, V <sub>OUT</sub> = 2.5V I <sub>OUT</sub> = 1A |        | 93   |        | %    |

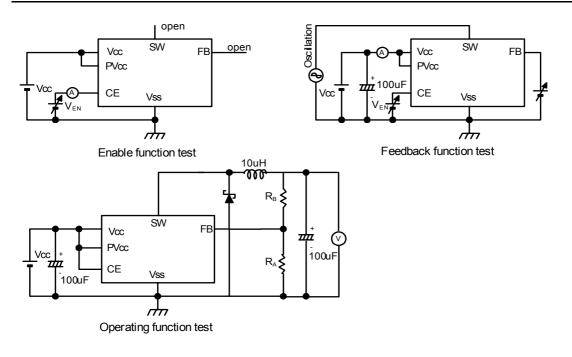



## PWM/PFM DUAL-MODE STEP-DOWN SWITCHING REGULATOR

# **Typical Application Circuit**

(1) Normal Application




# (2) Application with Short Circuit Protection





### PWM/PFM DUAL-MODE STEP-DOWN SWITCHING REGULATOR

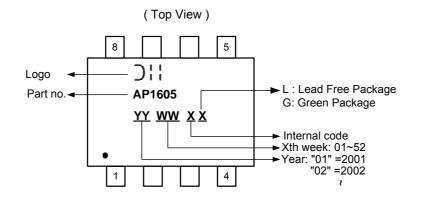
### **Test Circuit**



# **Function Description**

#### PWM/PFM Control (AP1605 Series)

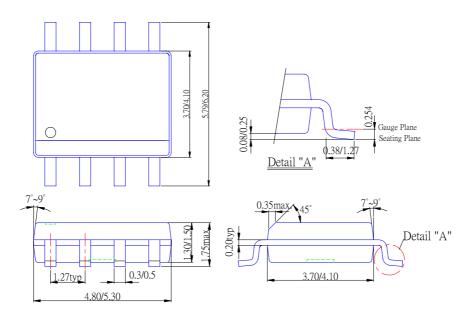
The AP1605 consists of DC/DC converters that employ a PWM/PFM auto-switch system.


In converters of the AP1605, the PFM mode varies in a range of duty cycle from 0% to 25%, and the PWM mode varies in a range of duty cycle from 25% to 100% according to the load current, and yet ripple voltage produced by the switching can easily be removed through a filter because the switching frequency remains constant. Therefore, these converters provide a low-ripple power over broad ranges of input voltage and load current.



### PWM/PFM DUAL-MODE STEP-DOWN SWITCHING REGULATOR

# **Marking Information**


### (1) SOP-8L



| Device  | Package | Identification Code |
|---------|---------|---------------------|
| AP1605S | SOP-8L  | AP1605              |

### Package Information (All Dimensions in mm)

#### Package Type: SOP-8L







### PWM/PFM DUAL-MODE STEP-DOWN SWITCHING REGULATOR

#### IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

#### LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.