ANALOG DEVICES

Preliminary Technical Data

FEATURES

2Ω Max On Resistance
0.5Ω Max On Resistance Flatness
200mA continious current
33 V supply range
Fully specified at $+12 \mathrm{~V}, \pm 15 \mathrm{~V}, \pm 5 \mathrm{~V}$
No V_{L} supply required
3 V logic-compatible inputs
Rail-to-rail operation
16-lead TSSOP and 16-lead LFCSP packages

APPLICATIONS

Automatic test equipment
Data aquisition systems
Battery-powered systems
Sample-and-hold systems
Audio signal routing
Communication systems
Relay Replacement

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC "1" INPUT

Figure 1.TSSOP package

SWITCHES SHOWN FOR A "1" INPUT LOGIC
Figure 2.LFCSP package

GENERAL DESCRIPTION

The ADG1436 is a monolithic CMOS device containing two independently selectable SPDT switches. An EN input on the LFCSP package is used to enable or disable the device. When disabled, all channels are switched off. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. Both switches exhibit break-before-make switching action for use in multiplexer applications.

It is designed on an i CMOS process. i CMOS (industrialCMOS) is a modular manufacturing process combining high voltage CMOS (complementary metal-oxide semiconductor) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no previous generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, iCMOS components can tolerate high supply

Rev. PrC
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
voltages, while providing increased performance, dramatically lower power consumption, and reduced package size.

The on resistance profile is very flat over the full analog input range ensuring excellent linearity and low distortion when switching audio signals. iCMOS construction ensures ultralow power dissipation, making the part ideally suited for portable and battery-powered instruments.

PRODUCT HIGHLIGHTS

1. 2Ω Max On Resistance over temperature.

Minimum distortion
3. 3 V logic-compatible digital inputs: $\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$.
4. No V_{L} logic power supply required.
5. Ultralow power dissipation: $<0.03 \mu \mathrm{~W}$.
6. 16 -lead TSSOP and 16 -lead $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP packages.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

TABLE OF CONTENTS

Specifications. 3
Dual Supply 3
Single Supply. 4
Absolute Maximum Ratings 7
Truth Table For Switches 8
ESD Caution 7
Pin Configurations and Function Descriptions 8
Terminology 9
Typical Performance Characteristics. 10
Test Circuits 13
Outline Dimensions 15
Ordering Guide 15

REVISION HISTORY

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match between Channels (Δ Ron) On Resistance Flatness (Rflat(on)	1.5 0.1 0.1	2 0.5 0.5	V ${ }_{\text {d }}$ to $\mathrm{V}_{\text {ss }}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} ; \text { Figure } 23 \\ & \mathrm{~V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-13.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{s}}=-5 \mathrm{~V} / 0 \mathrm{~V} /+5 \mathrm{~V} ; \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, $I_{D}, I_{S}(O n)$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.04 \\ & \pm 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 2.5 \\ & \pm 2.5 \\ & \pm 2.5 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 5 \\ & \pm 5 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{s}}= \pm 10 \mathrm{~V} \text {; Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{s}}= \pm 10 \mathrm{~V} \text {; Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \text {; Figure } 23 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current, I_{NL} or $\mathrm{I}_{\mathrm{INH}}$ Digital Input Capacitance, $\mathrm{CIN}_{\mathrm{I}}$	$\begin{aligned} & 0.005 \\ & 5 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.5 \end{gathered}$	\vee min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ Transition Time, ttrans ton (EN) $\mathrm{t}_{\text {off }}$ (EN) Break-before-Make Time Delay, to Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion + Noise -3 dB Bandwidth C_{s} (Off) C_{D} (Off) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{On})$	120 150 85 105 105 125 15 50 50 60 0.015 100 35 35 70	130 150	$\begin{aligned} & 200 \\ & 140 \\ & 170 \\ & 40 \\ & 1 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ \% typ MHz typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V} ; \text { Figure } 25 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} ; \text { see Figure } 25 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} ; \text { see Figure } 25 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=+10 \mathrm{~V} ; \text { Figure } 27 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \text { Figure } 29 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text { Figure } 30 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \text { Figure } 31 \\ & \mathrm{R}_{\mathrm{L}}=110 \Omega, 5 \mathrm{~V} \mathrm{rms,f=20Hz} \mathrm{to} \mathrm{20kHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 32 \\ & \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \end{aligned}$
POWER REQUIREMENTS IDD ldo Iss	$\begin{aligned} & 0.001 \\ & 150 \\ & 0.001 \end{aligned}$		$\begin{aligned} & 1 \\ & 300 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V}$ Digital Inputs $=0 \mathrm{~V}$ or V_{DD} Digital Input $=5 \mathrm{~V}$ Digital Inputs $=0 \mathrm{~V}, 5 \mathrm{~V}$ or V_{DD}

	$\mathbf{2 5}{ }^{\circ} \mathrm{C}$	$-\mathbf{4 0 ^ { \circ }} \mathbf{C}$ to $+\mathbf{8 5} 5^{\circ} \mathrm{C}$	$-\mathbf{4 0 ^ { \circ } \mathrm { C } \text { to }}$ $\mathbf{+ 1 2 5} 5^{\circ} \mathrm{C}$		
$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$			$\pm 4.5 / \pm 16.5$	V min $/ \mathrm{max}$	Gnd $=0 \mathrm{~V}$

${ }^{1}$ Guaranteed by design, not subject to production test.

SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match between Channels (Δ Ron) On Resistance Flatness (Rflat(on)	$\begin{aligned} & 2.5 \\ & 3 \\ & 0.1 \\ & 0.1 \end{aligned}$	4 0.5 0.5	0 V to V_{DD}	V Ω typ Ω max Ω typ Ω max Ω typ	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=+10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} ; \text { Figure } 23 \\ & \mathrm{~V}_{\mathrm{s}}=+10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{s}}=+3 \mathrm{~V} /+6 \mathrm{~V} /+9 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, l_{D} (Off) Channel On Leakage, $I_{D}, I_{S}(O n)$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.04 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 2.5 \\ & \pm 2.5 \\ & \pm 2.5 \end{aligned}$	± 5 ± 5 ± 5	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; Figure } 24 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; Figure } 24 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 10 \mathrm{~V} \text {, Figure } 25 \end{aligned}$
DIGITAL INPUTS Input High Voltage, Vinh Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ Input Current, $\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{l}_{\mathrm{INH}}$ Digital Input Capacitance, Cin	$\begin{aligned} & 0.001 \\ & 5 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.5 \end{gathered}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
```DYNAMIC CHARACTERISTICS Transition Time, ttrans ton (EN) toff (EN) Break-before-Make Time Delay, tD Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion + Noise -3 dB Bandwidth Cs (Off) CD (Off) CD, CS (On)```	$\begin{aligned} & 120 \\ & 150 \\ & 85 \\ & 105 \\ & 105 \\ & 125 \\ & 15 \\ & \\ & 30 \\ & 50 \\ & 60 \\ & 0.015 \\ & 100 \\ & 35 \\ & 35 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 130 \\ & 150 \end{aligned}$	$\begin{aligned} & 200 \\ & 140 \\ & 170 \\ & 1 \end{aligned}$	ns typ   ns max   ns typ   ns max   ns typ   ns max   ns typ   ns min   pC typ   dB typ   dB typ   \% typ   MHz typ   pF typ   pF typ   pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { Figure } 25 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { Figure } 25 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { Figure } 25 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=8 \mathrm{~V} ; \text { Figure } 27 \\ & \mathrm{~V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \text { Figure } 29 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \text { Figure 30; } \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \text { Figure } 31 \\ & \mathrm{R}_{\mathrm{L}}=110 \Omega, 5 \mathrm{~V} \mathrm{rms}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 32 \\ & \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{S}}=6 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{S}}=6 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{S}}=6 \mathrm{~V} \end{aligned}$

## Preliminary Technical Data


${ }^{1}$ Guaranteed by design, not subject to production test.

## DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH   Analog Signal Range   On Resistance (Ron)   On Resistance Match Between Channels ( $\Delta$ Ron)   On Resistance Flatness (Rflation)	3 0.1 0.1	4	0 V to $\mathrm{V}_{\mathrm{DD}}$	V   $\Omega$ typ   $\Omega$ max   $\Omega$ typ   $\Omega$ max   $\Omega$ typ	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \text {; See figure } \mathrm{x} \\ & \mathrm{~V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$ $\mathrm{V}_{\mathrm{s}}=-3 \mathrm{~V} / 0 \mathrm{~V} /+3 \mathrm{~V} ; \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
LEAKAGE CURRENTS   Source Off Leakage, Is (Off)   Drain Off Leakage, lo (Off)   Channel On Leakage, Id, Is (On)	$\begin{aligned} & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.04 \\ & \pm 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 2.5 \\ & \pm 2.5 \\ & \pm 5 \\ & \hline \end{aligned}$	$\pm 5$   $\pm 5$   $\pm 5$		$\begin{aligned} & V_{D D}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V} \text {; See figure } \mathrm{x} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V} \text {; See figure } \mathrm{x} \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V} \text {; See figure } \mathrm{x} \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ Input Current, In_or linh   Digital Input Capacitance, $\mathrm{C}_{1 \mathrm{~N}}$	$\begin{aligned} & 0.001 \\ & 3 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.5 \end{gathered}$	$V$ min   V max   $\mu A$ typ   $\mu \mathrm{A} \max$   pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$   Transition Time, ttrans   ton (EN)   toff (EN)   Break-Before-Make Time Delay, to   Charge Injection   Off Isolation   Channel-to-Channel Crosstalk	$\begin{aligned} & 150 \\ & 190 \\ & 85 \\ & 105 \\ & 105 \\ & 125 \\ & 50 \\ & \\ & 50 \\ & 50 \\ & 60 \end{aligned}$	130 150	$\begin{aligned} & 265 \\ & 140 \\ & 170 \\ & 10 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} ; \text { Figure } 25 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \text {; Figure } 25 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \text {; Figure } 25 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=3 \mathrm{~V} \text {; See figure } 25 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \text {; See figure } \mathrm{x} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; See figure } \\ & \mathrm{x} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{mHz} \text {; See figure } \\ & \mathrm{x} \end{aligned}$


	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Unit	Test Conditions/Comments
Total Harmonic Distortion + Noise	0.002			\% typ	$\mathrm{R}_{\mathrm{L}}=110 \Omega, 5 \mathrm{Vpp}, \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz
-3 dB Bandwidth	200			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}$; See figure x
$\mathrm{C}_{5}$ (Off)	35			pF typ	$\mathrm{Vs}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}$ (Off)	35			pF typ	$\mathrm{Vs}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{On})$	150			pF typ	$\mathrm{Vs}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{Vss}=-5.5 \mathrm{~V}$
IDD	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$
			1.0	$\mu \mathrm{A}$ max	
Iss	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$
			1.0	$\mu \mathrm{A}$ max	
$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$			$\pm 4.5 / \pm 16.5$	V min/max	Gnd $=0 \mathrm{~V}$

[^0]
## ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 4.

Parameter	Ratings
$V_{\text {DD }}$ to V $\mathrm{V}_{\text {S }}$	35 V
Vod to GND	-0.3 V to +25 V
$V_{\text {ss }}$ to GND	+0.3 V to -25 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Inputs ${ }^{1}$	GND - 0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, S or D	300 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle max)
Continuous Current, S or D	200 mA
Operating Temperature Range Automotive (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
16 -Lead TSSOP, $\theta_{\mathrm{JA}}$ Thermal Impedance	$150.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP, $\theta_{\mathrm{JA}}$ Thermal Impedance	$72.7^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb free	$260^{\circ} \mathrm{C}$

${ }^{1}$ Over voltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition $s$ above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

## PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS



Figure 3.TSSOP Pin Configuration


EXPOSED PAD TIED TO SUBSTRATE, Vss NC = NO CONNECT

Figure 4. LFCSP Pin Configuration

Table 5. Pin Function Descriptions

Pin No.			
TSSOP	LFCSP	Mnemonic	Function
1	15	IN1	Logic Control Input.
2	16	S1A	Source Terminal. Can be an input or output.
3	1	D1	Drain Terminal. Can be an input or output.
4	2	S1B	Source Terminal. Can be an input or output.
5	3	VS	Most Negative Power Supply Potential.
6	4	GND	Ground (0 V) Reference.
$7,8,14-16$	$5,7,13,14$	NC	No Connect.
9	6	IN2	Logic Control Input.
10	8	S2A	Source Terminal. Can be an input or output.
11	9	D2	Drain Terminal. Can be an input or output.
12	10	S2B	Source Terminal. Can be an input or output.
13	11	VDD	Most Positive Power Supply Potential.
-	12	EN	Active High Digital Input. When low, the device is disabled and all switches are off. When
			high, INx logic inputs determine the on switches.

TRUTH TABLE FOR SWITCHES
Table 6. ADG1436 TSSOP Truth Table

$\mathbf{I N x}$	Switch $\mathbf{x A}$	Switch $\mathbf{x B}$
0	Off	On
1	On	Off

Table 7. ADG1436 LFCSPTruth Table

EN	INx	SxA	SxB
0	X	Off	Off
1	0	Off	On
1	1	On	Off

## Preliminary Technical Data

## TERMINOLOGY

$I_{D D}$
The positive supply current.
Iss
The negative supply current.
$\mathbf{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
The analog voltage on Terminals D and S.

## Ron

The ohmic resistance between D and S.
$\mathrm{R}_{\text {flat(on) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.

## $\mathrm{I}_{\mathrm{s}}$ (Off)

The source leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}$ (Off)
The drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$
The channel leakage current with the switch on.
VINL
The maximum input voltage for Logic 0 .
$V_{\text {INH }}$
The minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$
The input current of the digital input.
$\mathrm{C}_{s}$ (Off)
The off switch source capacitance, measured with reference to ground.

## $\mathrm{C}_{\mathrm{D}}$ (Off)

The off switch drain capacitance, measured with reference to ground.
$\mathrm{C}_{\mathrm{p}}, \mathrm{Cs}_{\mathrm{s}}(\mathrm{On})$
The on switch capacitance, measured with reference to ground.
Cin
The digital input capacitance.
$t_{\text {trans }}$
The delay time between the $50 \%$ and $90 \%$ points of the digital input and switch on condition when switching from one address state to another.

## Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

## Off Isolation

A measure of unwanted signal coupling through an off switch.

## Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

## Bandwidth

The frequency at which the output is attenuated by 3 dB .

## On Response

The frequency response of the on switch.

## Insertion Loss

The loss due to the on resistance of the switch.

## THD + N

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 5. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Dual Supply


Figure 6, On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single I Supply


Figure 7. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply


Figure 8. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

TBD

Figure 9. Leakage Current as a Function of $V_{D}\left(V_{S}\right)$


Figure 10. Leakage Currents as a Function of $V_{D}\left(V_{s}\right)$

Figure 11. Leakage Current as a Function of $V_{D}\left(V_{S}\right)$


Figure 12. Leakage Currents as a Function of Temperature


Figure 13. IoD vs. Logic Level


Figure 17. Off Isolation vs. Frequency


Figure 18. Crosstalk vs. Frequency


Figure 19. On Response vs. Frequency


Figure 20. THD + N vs. Frequency

Figure 211. Capacitance vs. Source Voltage for Dual Supply
Figure 222. Capacitance vs. Source Voltage for Single Supply

## TEST CIRCUITS



Figure 26. Switching Times


Figure 28. . Enable Delay, ton (EN), toff (EN)


Figure 29. Charge Injection


Figure 30. Off Isolation


Figure 33. THD + Noise

Figure 31. Channel-to-Channel Crosstalk

## OUTLINE DIMENSIONS



Figure 34. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)
Dimensions shown in inches and (millimeters


Figure 35. 16-Lead Lead Frame Chip Scale Package [VQ_LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body, Very Thin Quad
(CP-16-4)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG1436YRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1436YRUZ-   REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1436YRUZ-   REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1436YCPZ-   $500 R L 7$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Lead Frame Chip Scale Package (LFCSP)	CP-16-4
ADG1436YCPZ-   REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Lead Frame Chip Scale Package (LFCSP)	CP-16-4

NOTES

NOTES


[^0]:    ${ }^{1}$ Guaranteed by design, not subject to production test.

