

12MHz 20V/ μ s G=1,2,5,10 Programmable Gain *i*CMOSTM Instrumentation Amplifier

Preliminary Technical Data

AD8250

FEATURES

Easy to Use

Programmable Gains: 1, 2, 5, 10

Digital or Pin Programmable Gain Setting

Temp Range -40°C to 85°C

EXCELLENT DC PERFORMANCE

High CMRR 100dB G=10 Low Gain Drift: 10ppm/°C Low Offset Drift: 1uV/°C Low Offset: 70uV G=10

EXCELLENT AC PERFORMANCE

Fast Settle Time: 0.5us to 0.01%

High Slew Rate: 20V/µs

High CMRR over Frequency: 80dB to 50kHz

Low Noise: 13nV√Hz, G=10 Low Power: 3.5 mA (typ) Supply: ±5V to ±12V

Applications Data Acquisition Bio-Medical Analysis Test and Measurement

High Performance System Monitoring

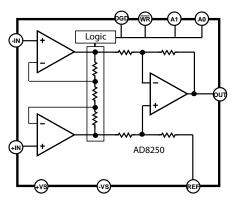


Figure 1. Functional Block Diagram

Rev.PrB

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

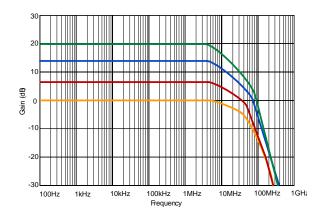


Figure 2. Gain vs Frequency

GENERAL DESCRIPTION

The AD8250 is a digitally gain programmable instrumentation amplifier that has high $G\Omega$ input impedance and low distortion making it suitable for sensor interfacing and driving high sample rate analog to digital converters. It has high bandwidth of 12MHz, low distortion and settle time of 0.5us to 0.01%. Offset drift and gain drift are limited to 1uV/°C and 10ppm/°C respectively. In addition to its wide input common-voltage range, it boasts a high common-mode rejection of 80dB at G=1 from DC to 50kHz. The combination of precision DC performance coupled with high speed capabilities make the AD8250 an excellent candidate for data acquisition and medical applications. Furthermore, this monolithic solution simplifies design, manufacturing and boosts performance of instrumentation by maintaining tight match of internal resistors and amplifiers.

The AD8250's user interface comprises of a parallel port that allows users to set the gain in one of three different ways. A two bit word sent to A1 and A2, via a bus may be latched using the $\overline{\rm WR}$ input. An alternative is to set the gain within 1µs by using the gain port in transparent mode where the state of A0 and A1 directly set the gain. The last method is to strap A1 and A2 to a high or low voltage potential, permanently setting the gain.

The AD8250 is available in a 10 pin MSOP package and specified over -40°C to 85°C, making it an excellent solution for applications where size and packing density are

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2006 Analog Devices, Inc. All rights reserved.

AD8250

Preliminary Technical Data

important considerations.

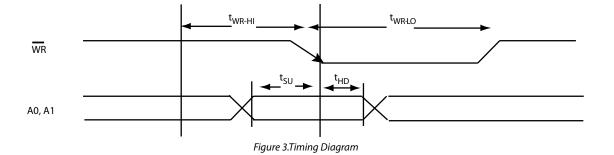
TABLE OF CONTENTS

AD8250—Specifications	Transparent Gain Setting Mode:	
Timing Diagram5	Write Enable Gain Setting Mode:	
Absolute Maximum Ratings	Outline Dimensions	8
Pin Configurations And Functional Descriptions 7	ESD Caution	8
	Preliminary Revision : B	

REVISION HISTORY

AD8250—SPECIFICATIONS

Table 1. $V_S = \pm 12~V$, $V_{REF} = 0~V$ (@ $T_A = 25^{\circ}$ C, G = +1, $R_L = 2~k\Omega$, unless otherwise noted.)


			AD8250ARM		
Parameter	Conditions	Min	Тур	Max	Unit
COMMON-MODE REJECTION RATIO (CMRR)					
CMRR to 60 Hz with 1 $k\Omega$ Source					
Imbalance	$V_{CM} = -10 \text{ V to } +10 \text{ V}$				
	G = 1		80		dB
	G = 2		86		dB
	G = 5		94		dB
	G = 10		100		dB
CMRR to 50kHz	$V_{CM} = -10 \text{ V to } +10 \text{ V}$				
	G = 1		80		dB
	G = 2				dB
	G = 5				dB
NOISE	G = 10				dB
NOISE	G=1		32		
Voltage Noise, 1kHz	G=1 G=2		20		nV/√Hz
	G=5		14		nV/√Hz
	G=10		13		nV/√Hz nV/√Hz
RTI, 0.1 Hz to 10 Hz	G=1		13		μV p-p
111, 0.1 112 to 10 112	G=2				μV p-p
	G=5				μV p-p
	G=10				μV p-p
Current Noise	f = 1kHz				fA/√Hz
VOLTAGE OFFSET					
Offset, Vos	$G=1, V_S = \pm 5 \text{ V to } \pm 12 \text{ V}$		250		μV
Over Temperature	T = -40°C to +85°C				μV
Average TC	T = -40°C to +85°C				μV/°C
Offset, Vos	$G=2, V_S = \pm 5 \text{ V to } \pm 12 \text{ V}$		150		μV
Over Temperature	$T = -40^{\circ}C \text{ to } +85^{\circ}C$				μV
Average TC	$T = -40^{\circ}C \text{ to } +85^{\circ}C$				·
Offset, Vos	$G=5$, $V_S=\pm 5$ V to ± 12 V		90		μV/°C
Over Temperature	$T = -40^{\circ}C \text{ to } +85^{\circ}C$		90		μV
·					μV
Average TC	T = -40°C to +85°C		70		μV/°C
Offset, Vos	$G=10, V_5 = \pm 5 \text{ V to } \pm 12 \text{ V}$		70		μV
Over Temperature	$T = -40^{\circ}C \text{ to } +85^{\circ}C$				μV
Average TC	$T = -40^{\circ}C \text{ to } +85^{\circ}C$				μV/°C
Offset Referred to the Input vs. Supply (PSR)	$V_S = \pm 8 \text{ V to } \pm 12 \text{ V}$				
G = 1			115		dB
G = 2			110		dB
G = 5			110		dB
G = 10		96	110		dB
INPUT CURRENT					
Input Bias Current			10	25	nA
Over Temperature	$T = -40^{\circ}C \text{ to } +85^{\circ}C$			35	nA

AD8250

			08250A		
Parameter	Conditions	Min	Тур	Max	Unit
Average TC					pA/°C
Input Offset Current			5	10	nA
Over Temperature	$T = -40^{\circ}C \text{ to } +85^{\circ}C$				nA
Average TC			1.5		pA/°C
DYNAMIC RESPONSE					
Small Signal -3dB Bandwidth					
	G=1		17		MHz
	G=2		15		MHz
	G=5		10		MHz
	G=10		3.5		MHz
Settling Time 0.01%	10 V Step				
-	G=1		0.5		μS
	G=2				μS
	G=5				μS
Sattling Time 0.0010/	G=10				μS
Settling Time 0.001%	10 V Step		1.5		
	G=1		1.5		μS
	G=2				μS
	G=5				μS
	G=10				μS
Slew Rate	G=1	20		35	V/µS
	G=2	30		35	V/μS
	G=5	30		35	V/μS
	G=10	30		35	V/μS
	G-10	30			ν/μ5
Total Harmonic Distortion +					
Noise	RL = 100kOhms, G=1				%
	RL = 2kOhms, G=1				%
GAIN					70
Gain Range: 1, 2, 5, 10		1		10	V/V
Gain Error	$V_{OUT}=\pm 10 \text{ V}$	'		'	V/ V
Gaill Elloi	V001-±10 V G=1		0.05		
			0.03		%
	G=2				
	G=5				
Cain Namilia andre	G=10				
Gain Nonlinearity	$V_{OUT} = -10 \text{ V to } +10 \text{ V}$				
	$G=1$, $R_L=10 \text{ k}\Omega$		4		ppm
	$G=2$, $R_L=10$ k Ω		4		ppm
	$G=5$, $R_L=10$ $k\Omega$		4		ppm
	$G=10$, $R_L=10$ $k\Omega$		4		ppm
Gain Nonlinearity	$G=1-10$, $R_L=2$ $k\Omega$		4		ppm
Gain vs. Temperature	All Gains			10	ppm/ ^c
Sam vs. remperature			1		hhui),
INPUT			1		
Input Impedance					
			111.2		
Differential			1 2		GΩ∥ p
Common Mode			1 2		GΩ∥ p
Innut Oncertical Value	V 15V45 113V			+Vs	
Input Operating Voltage Range	$V_S = \pm 5 \text{ V to } \pm 12 \text{ V}$	-Vs + 1		1.5	V
Over Temperature	$T = -40^{\circ}C \text{ to } +85^{\circ}C$		1	l	V

			AD8250ARM		
Parameter	Conditions	Min	Тур	Max	Unit
OUTPUT	$R_L = 10 \text{ k}\Omega$,				
		-Vs +		+Vs -	
Output Swing	$V_S = \pm 5 \text{ V to } \pm 12 \text{ V}$	1.5		1.5	V
Over Temperature	$T = -40^{\circ}C \text{ to } +85^{\circ}C$				V
Short Circuit Current			20		mA
REFERENCE INPUT					
R _{IN}			20		kΩ
l _{IN}	$V_{IN}+$, $V_{IN}-$, $V_{REF}=0$				μΑ
Voltage Range		-Vs		+Vs	V
Gain to Output					V/V
Digital Logic Inputs					V
Digital Ground Voltage, DGND					V
Digital Input Voltage Low	Referenced to DGND		1		V
Digital Input Voltage High	Referenced to DGND		4		V
Digital Input Leakage Current					рА
Gain Switching Time					ns
Tsu					ns
Тно					ns
T_{WR_LO}					ns
T _{WR_HI}					ns
POWER SUPPLY					
Operating Range ³		±5		±12	
Quiescent Current			3.5		mA
Over Temperature	$T = -40^{\circ}C \text{ to } +85^{\circ}C$				mA
TEMPERATURE RANGE					
Specified Performance		-40		+85	°C

TIMING DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Table 2. AD8250 Absolute Maximum Ratings

Parameter	Rating
Supply Voltage	+/-14V
Power Dissipation	See Figure 2
Output Short Circuit Current	
Common-Mode Input Voltage	-Vs – 0.5 V to +Vs + 0.5 V
Differential Input Voltage	V
Storage Temperature	−65°C to +125°C
Operating Temperature Range	-40°C to +85°C
Lead Temperature Range	°C
(Soldering 10 sec)	
Junction Temperature	°C
Θ _{JA} (4 layer JEDEC Standard	°C/W

Board)	
Package Glass Transition Temperature	℃
ESD (Human Body Model)	kV
ESD (Charge Device Model)	kV
ESD (Machine Model)	kV

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition s above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN CONFIGURATIONS AND FUNCTIONAL DESCRIPTIONS

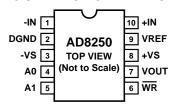


Figure 4. 10-Lead MSOP

Table 3. Pin Function Descriptions— 10-Lead MSOP(ARM PACKAGE)

Pin No.	Name	Description
1	-IN	Inverting Input Terminal (True differential input)
2	DGND	Digital Ground.
3	-Vs	Negative Supply Terminal
4	A0	Gain Setting Pin (LSB)
5	A1	Gain Setting Pin (MSB)
6	WR	Write Enable
7	VOUT	Output Terminal
8	+Vs	Positive Supply Terminal
9	VREF	Reference Voltage Terminal (drive this pin with a low impedance voltage source to level shift the output signal)
10	+IN	Non-inverting Input Terminal (True differential input)

GAIN SETTING

The AD8250's gains are set digitally. The A0 and A1 pins must be set either HIGH or LOW with respect to digital ground, DGND. The WR pin is a tri-state switch. It may be set to one of three levels, HIGH, LOW or to –VS. A HIGH signal is typically greater than 4V but less than 6V and a LOW signal is typically less than 1V but higher than DGND, 0V. Gains can be programmed using the following methods:

TRANSPARENT GAIN SETTING MODE:

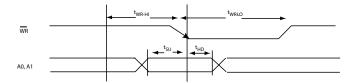
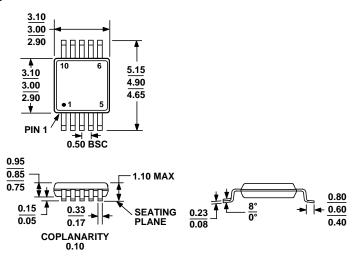

In this mode, the gain is set by toggling $\underline{A0}$ and A1 to HIGH or LOW. To enable transparent mode, tie \overline{WR} to -Vs. This configures the AD8250 to change gains when A0 and A1 are set according to Table 4.

Table 4.. Transparent Mode Gain Settings

G	WR	A1	A0
1	-Vs	LO	LO
2	-Vs	LO	HI
5	-Vs	НІ	LO
10	-Vs	HI	HI

WRITE ENABLE GAIN SETTING MODE:

In this mode, the gains are changed only during the negative edge of the \overline{WR} strobe. So for instance, the gain is determined by the two bit value held on A0 and A1 at the time the \overline{WR} strobe transitions from HIGH to LOW.


Table 5.: Write Enable Mode Gain Settings

Gain (changes to)	WR	A1	A0
1	HI -> LO	LO	LO
2	HI -> LO	LO	HI
5	HI -> LO	HI	LO
10	HI -> LO	HI	HI
No Change	LO->LO	X	X
No Change	LO->HI	X	X
No Change	HI-> HI	X	X

X = don't care

.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-BA

Figure 5. 10 Lead MSOP (RM) – Dimensions shown in millimeters

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Table 6. Ordering Guide

AD00000 Products	Temperature Package	Package Description	Package Option	Branding
AD8250ARZ	-40°C to +85°C	10-Lead MSOP	RM-10	
AD8250ARZ-RL	-40°C to +85°C	10-Lead MSOP	RM-10	
AD8250ARZ-R7	-40°C to +85°C	10-Lead MSOP	RM-10	
AD8250-EVAL		Evaluation Board		