

Automotive Lamp-Outage Monitor, $V_T = 8 \text{ mV}$

Description

The monolithic integrated bipolar circuit, U479B, is designed as a monitor for lamp failure in automobiles. The comparator threshold is matched to the PTC characteristic of incandescent lamps. The threshold is tied to $V_{4,6} = V_S - V_T$ whereas $V_T = 8$ mV.

If the voltage drop across shunt resistor, R_{sh} , exceeds 8 mV, the output is turned off, otherwise the output is turned on. Without supply voltage or open input Pin 8, the output is turned off. A not used comparator input must be connected to Pin 7.

Features

- 2 kV-ESD protection
- Two comparators with common reference
- Tight threshold tolerance
- Threshold matched to PTC characteristic of incandescent lamps
- Temperature compensated

- NPN output
- Interference and damage–protection according to VDE 0839
- EMI protection
- Reversal polarity protection
- Load-dump protection

Ordering Information

Extended Type Number	Package	Remarks
U479B	DIP8	
U479B–FP	SO8	

Block Diagram

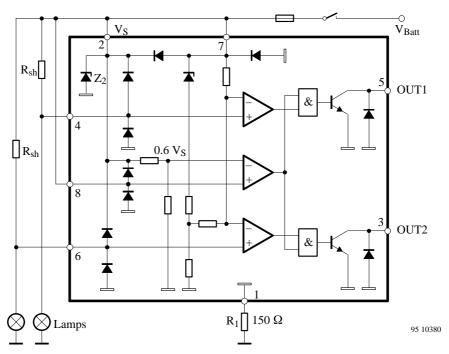


Figure 1. Schematic and application circuit

Rev. A2, 22-Apr-99

Pin Description

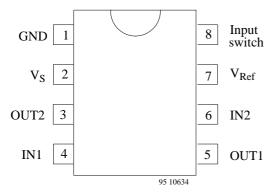


Figure 2. Pinning

Pin	Symbol	Function
1	GND	Reference point, ground
2	V_{S}	Supply voltage
3	OUT2	Output 2
4	IN1	Input 1
5	OUT1	Output 1
6	IN2	Input 2
7	V_{Ref}	Reference voltage
8	Input	Input switch

Absolute Maximum Ratings

Parameters			Symbol	Value	Unit
Supply voltage		Pin 2, 7	V _S	16.5	V
Current consumption					
t = 2 ms, measured at Pin 1 (GND)	Pin 1	I_1	1.5	A
Output current		Pin 3, 5	I _{3,5}	20	mA
Input voltage		Pin 4, 6			
reference point Pin 7			$-V_{4,6}$	6	V
Power dissipation					
$T_{amb} = 95 ^{\circ}C$	DIP 8		P _{tot}	420	mW
;	SO 8			360	
- anio	DIP 8		P_{tot}	690	mW
	SO 8			560	
Ambient temperature range			T _{amb}	-40 to +95	°C
Storage temperature range	·		T_{stg}	-55 to +125	°C
Junction temperature			T _i	150	°C

Thermal Resistance

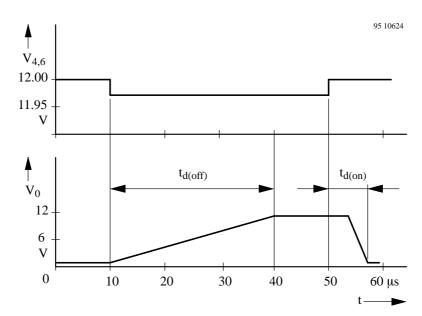
Parameters		Symbol	Value	Unit
Junction ambient	DIP8 SO8	$R_{thJA} \ R_{thJA}$	110 160	K/W K/W

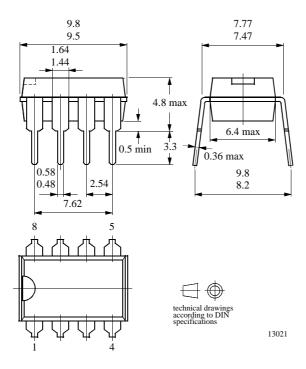
2 (5) Rev. A2, 22-Apr-99

Electrical Characteristics

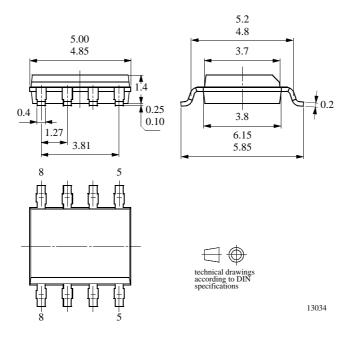
$V_S = 9 \text{ to } 15 \text{ V}, T_{amb} = -40 \text{ to } +95 \text{ °C}, 10 \text{ s}$	figure 1, unless otherwise specified
--	--------------------------------------

Parameters	Test Conditions / Pin	Symbol	Min	Тур	Max	Unit
Supply voltage	Pin 2,7	V_{S}	9		15	V
Internal Z-diode Z ₂	Pin 2	$V_{\rm Z}$	20			V
Current consumption	$V_S = 12 \text{ V}$ Pin 1 measured at GND	I_1		4.5	6	mA
Output saturation voltage	$V_S = 9 \text{ V}, I_{3,5} = 10 \text{ mA}$ $T_{amb} = 25 \text{ °C} \text{Pin } 3,5$	V_{sat}			0.5	V
Control signal threshold	Reference point $V_{Pin 7}$ $I_{3,5} = 3 \text{ mA}$ Pin 4,6 $V_S = 12 \text{ V}$ $V_S = 15 \text{ V}$	$-V_{\mathrm{T}}$ $-V_{\mathrm{T}}$	6.5 7.8	8 9.3	9.5 10.8	mV mV
Voltage drift $\Delta V = \frac{V_{T(15V)} - V_{T(12V)}}{15 \text{ V} - 12V}$		ΔV		0.45		mV/V
Threshold voltage	Switch identification Pin 8	V ₈		0.6 V _S		V
Input currents	Pin 4,6	I_{I}		100		nA
	Pin 8			5		μΑ
Delay time	Switch-on Pin 3,5 High to low	t _{d(on)}		6		μs
	Switch-off Low to high	t _{d(off)}		30		μs




Figure 3. Delay times

Rev. A2, 22-Apr-99 3 (5)



Dimensions in mm

Package DIP8
Dimensions in mm

Package SO8 Dimensions in mm

4 (5) Rev. A2, 22-Apr-99

Ozone Depleting Substances Policy Statement

It is the policy of **TEMIC Semiconductor GmbH** to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify TEMIC Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423

Rev. A2, 22-Apr-99 5 (5)