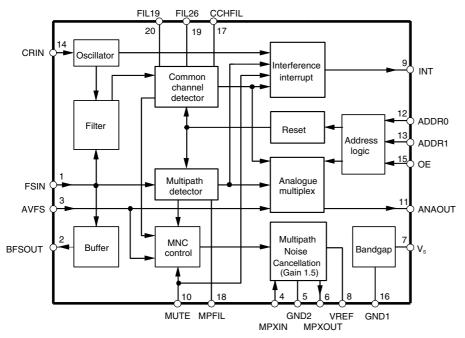
Features


- · Preparation of the fieldstrength signal
- Detection of multipath and common channel interferences
- Evaluation of the receiving conditions by microcomputer
- Interrupt output for abruptly occuring interferences
- Suitable for analog as well as digital processing
- Mute function controllable by microcomputer
- Multipath noise cancellation
- · Only few external components necessary

Description

The U4275B is a bipolar integrated receiving conditions analyser as well as multipath noise cancellation circuit. It is designed for high-performance car radio applications.

Block Diagram

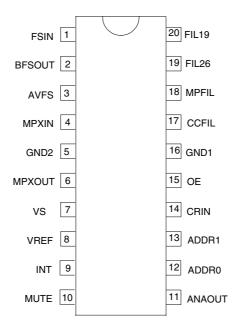
Figure 1.

Ordering Information

Extended Type Number	Package	Remarks		
U4275B-MFL	SO20 plastic			
U4275B-MFLG3	SO20 plastic	Taped and reeled		

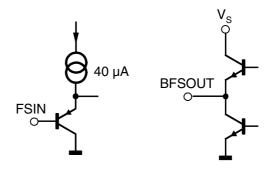
FM Receiving Condition Analyzer and Multipath Noise Cancellation IC

U4275B


Rev. A3, 16-Oct-01

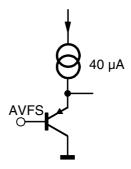
Pin Configuration

Figure 2. Pinning SO20

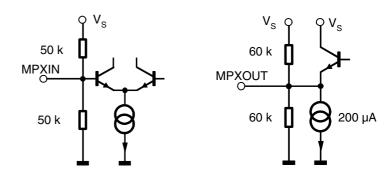

Pin Description

Pin	Symbol	Function
1	FSIN	Fieldstrength input
2	BFSOUT	Buffered fieldstrength output
3	AVFS	Average of fieldstrength signal
4	MPXIN	Multiplex input signal
5	GND2	Analog ground
6	MPXOUT	Multiplex output signal
7	VS	Supply voltage
8	VREF	Reference voltage
9	INT	Interrupt output
10	MUTE	External mute input
11	ANAOUT	Analog multiplex output
12	ADDR0	Address 0 for analog multiplexer
13	ADDR1	Address 1 for analog multiplexer
14	CRIN	Ceramic resonator input (456 kHz)
15	OE	Output enable for ANAOUT
16	GND1	Ground
17	CCFIL	Filter for common channel detection
18	MPFIL	Filter for multipath detection
19	FIL26	Filter for 26-kHz detection
20	FIL19	Filter for 19-kHz-Pilot detection

2 (14) **U4275B**


FSIN/BFSOUT

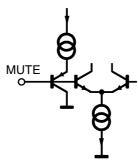
All information about reception conditions is derived from the fieldstrength voltage. The fieldstrength voltage at FSIN is initially buffered so as not to impair the characteristics of the IF IC and is available at BFSOUT.


AVFS

The fieldstrength signal at buffer output BFSOUT is averaged over time and applied to input AVFS via an RC low-pass filter with a large time constant.

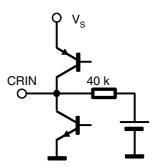
MPXIN / MPXOUT

The MPX signal is fed directly from the FM demodulator to input MPXIN and is available amplified by a factor of 1.5 at MPXOUT. The MPX signal is blanked out in the event of multipath interference or when MUTE is activated externally in the circuit part MNC (Multipath Noise Canceller). In all other cases, the MPX signal passes through the IC unchanged.

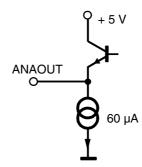


GND2

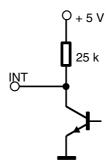
GND2 is the reference potential for the MPX signal. GND2 should be connected directly with the ground terminal of the IF FM demodulator to ensure a high signal—to—noise ratio of the MPX signal.


MUTE

The function unit MNC can be controlled externally via this pin. Blanking occurs when the voltage at the MUTE pin falls below 1 V. A voltage in the range VS/2 > 1 V defines the switching threshold as from which multipath interference is signalled at pin INT.


CRIN

The internal one-pin oscillator is connected to CRIN with a 456-kHz ceramic resonator. The 456-kHz reference frequency is used for calibrating the filters and generating pulses at INT.


ANAOUT

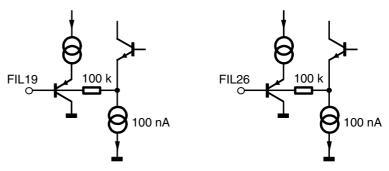
Analyzer output. DC values are available at this pin that characterize the respective reception situation. The output voltage is limited to max. 5 V. ANAOUT is a multiplex output, i.e. the value for the fieldstrength, level of multipath interference or level of common channel interference is applied to this output depending on addressing. ANAOUT can be switched to the high-impedance state by means of OE.

INT

Certain types of abruptly occuring interferences with reception require a fast reaction by the receiver. INT signals such events to other circuit parts by means of 40- μ s-wide pulses (low active). The output voltage is limited to 5 V to permit direct activation of a system controller. A monoblend function can thus be activated on simple receivers. On antenna-diversity receivers, INT can activate switchover between antennas.

CCFIL

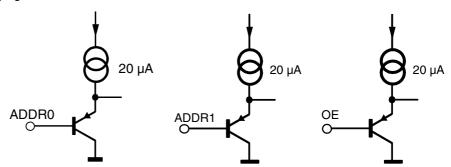
This controller element detects the absolute value of occuring common channel interference. This information is stored in a capacitor which must be connected externally to CGFIL. The capacitor voltage can be selected by the system controller which is then available via ANAOUT.


MPFIL

This controller element detects the absolute value of occuring multipath interference. This information is stored in a capacitor which must be connected externally to MPFIL. The capacitor voltage can be interrogated by the system controller via ANAOUT.

FIL19 / FIL26

In order to differentiate the various types of interferences, the amplitudes of a few spectral components of the fieldstrength signal are determined and filtered in FIL19 and FIL26 for further processing.



VREF

IF Mute is activated, the reference voltage VREF will apply to the output MPXOUT. A capacitor of 100 nF should be connected at VREF for filtering.

ADDR0 / ADDR1 / OE

The desired output variable at ANAOUT is selected via the address lines ADDR0 and ADDR1 and switched to the output via the enable input OE. For assignment, see table next page.

No	OE	ADDR1	ADDR0	ANAOUT
0	L	L	L	Internal reference voltage Additional reset of the analog voltages for signal level, multipath, common channel
1	L	L	Н	Signal level
2	L	Н	L	Multipath
3	L	Н	Н	Common channel
4	Н	Х	Х	High impedance off-state

Functional Description

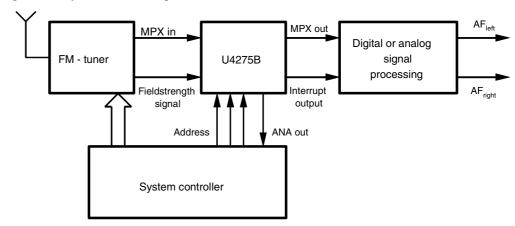
Interference with FM reception can be triggered by various causes, such as multipath reception, adjacent and insufficient field strength. At the same time, multipath reception is responsible for the most frequently occurring types of interference. In order to suppress this interference systematically, it is first necessary to analyze the received signal so that it is possible to derive the type of interference at any time. The circuit U4275B analyzes the FM reception conditions and makes the data available. This data can be requested by a system controller and evaluated (see figure 1). It is thus possible to introduce measures for optimizing reception - possibly tailored to individual types of interference.

Acoustically relevant multipath interference, since it requires a short reaction time, is suppressed directly by the circuit via a Multipath Noise Cancellation (MNC) function.

The U4275B can be used both in conventional receivers and in receivers with digital signal processing. Furthermore, it is designed so that it can activate switchover between antennas on antenna-diversity receivers. The integrated circuit can be connected in cascade without much wiring for tuner-diversity receivers.

The field strength voltage of the IF amplifier provides all the information about the reception conditions. The following demands are placed on the field strength output of the IF amplifier:

- A linear characteristic, i.e. the output voltage must be proportional to the logarithm of the IF voltage in the range of RF levels encountered in practice.
 Deviations from linearity lead to a different evaluation of interference signals of the same intensity of the signal levels are different.
- The "signal level" output has to react to extremely fast dips in the field strength.
 Total field strength failures lasting 500 ns and occuring a voltage dip to approx.
 V at the field strength output.


Restrictions

The field strength voltage becomes increasingly noisy in the range of low RF levels (< 30 dB μ V). The noise prevents reliable detection of interference. Therefore, only the average field strength value can be evaluated over a relatively large time constant in this range. The pilot signal component in the receive signal is an important basis for quality assessment. Multipath detection and common channel detection therefore function only in the case of stereo transmitters.

Figure 3. System block diagram

Multipath Detector

Typical multipath interference is characterized by fast, modulation-dependent field strength dips, as shown in figure 2. The multipath detector detects these field strength dips and evaluates them in accordance with the level of anticipated acoustic interference.

In the case of acoustically relevant interference, it operates the interrupt output INT and the MNC function as a reaction to the interference. If the acoustic effects of interference can be reduced by monoblend, only pulses will appear at output INT. In the case of stronger interference, interference suppression takes place by means of the Multipath Noise Cancellation (MNC) function. The multipath interference also generates a voltage proportional to the interference level at MPFIL. The capacitor connected there is responsible for storing the information to give the system controller sufficient time to read out the value at ANAOUT. The capacitor at MPFIL is discharged again slowly with a long time constant. The corresponding addressing at ADDR0, ADDR1 and OE to permit a rapid assessment when the station is changed.

Multipath Noise Cancellation (MNC)

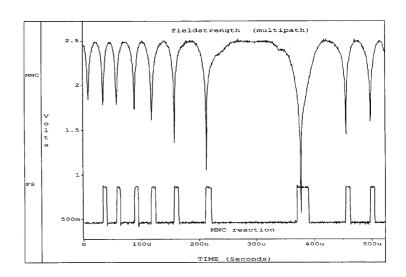
Extremely strong multipath interference remains audible in spite of the monoblend function. The remaining interference is reduced still further by the MNC circuit if the output MPXOUT is connected to a reference voltage for a few microseconds while the interference is still occurring.

In order to eliminate the possibility of malfunctions, activation of the MNC depends on the following conditions:

- The average field strength must exceed a certain value so that the noise in the field strength signal does not cause the MNC to respond at low RF voltages and
- the field strength dip must not be caused by adjacent-channel interference. Blanking will otherwise make the modulation of the adjacent channel audibly. The information for this purpose is derived from the common channel detector.

The MNC function can also be activated externally via the MUTE pin (low active). The circuit can therefore also be used as a fast high performance mute stage.

Common Channel Detector


The common channel detector evaluates the spectral composition of the field strength signal to distinguish common channel interference from other types of interference. This is a particularly difficult task, since weak multipath interference results in a spectrum of the field strength signal that is similar to that of common channel interference. the pilot signal portion of the field strength signal serves as a reference variable to permit a clear distinction to be made. A voltage proportional to the interference is generated at the filter

U4275B

input CCFIL in the case of common channel interference. The external capacitor is responsible for storing the information to give the system controller sufficient time to read out the value at ANAOUT. The capacitor is discharged again slowly at CCFIL, with a long time constant. The capacitor can also be discharged rapidly via corresponding addressment when stations are changed.

The common channel detector is blocked for further 20 ms after the detectors are reset to prevent transitory phenomena in the selective filters from causing an indicating error.

Figure 4.

Absolute Maximum Ratings

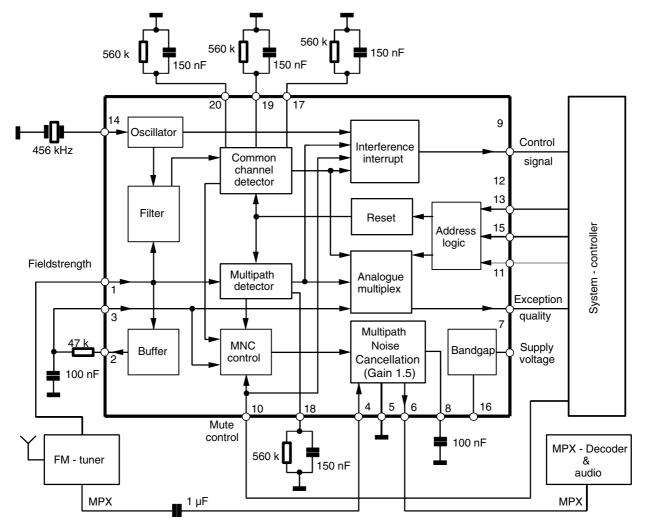
Reference point Pin1b, unless otherwise specified

Parameter	Symbol	Value	Unit	
Supply voltagePin 7	V _S	10	V	
Supply currentPin 7	I _S	t.b.d.	mA	
Ambient temperature range	T _{amb}	-30 to +85	°C	
Storage temperature range	T _{stg}	t.b.d.	°C	
Junction temperature	T _j	t.b.d.	°C	
Electrostatic handling (MIL standard 883 C)	± V _{ESD}	2000	V	

Thermal Resistance

Parameter	Symbol	Value	Unit	
Junction ambient	R_{thJA}	t.b.d.	K/W	

Electrical Characteristics


 T_{amb} = 25°C, V_S = 8.5 V, unless otherwise specified

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
	Supply voltage		7	Vs	8	8.5	10	V	
	Supply current		7	Is	6	8	10	mA	
Fields	trength								
	Input voltage		1	Vi	0		5.0	V	
	Output voltage	Rload / Cload	2	Vout	50		5000	mV	
	Bandwidth		2	BW	100			kHz	
	Input voltage		3	V	0		5	V	
Multip	ath noise cancellation			l				1	
	MPX input voltage		4	VMPXIN			350	VRMS	
	MPX output voltage	RL = 10 kΩ	6	VMPXOUT			525	VRMS	
	THD	RL = 10 kΩ	6			0.06	0.2	%	
		VMPXIN = 350 mV							
	Bandwidth	RL = 10 kΩ	6		100			kHz	
	Noise figure								
	Mute depth	RL = 10 kΩ	6		75	82		dB	
	Gain	RL = 10 kΩ	6	G		3.5		dB	
Addre	ss logic			l				1	
	Input voltage	High	12, 13, 15	VIN	0		1	V	
		Low	13, 13, 15	VIN	3		Vs	V	
	Input current	Low	12	lIN			1	μΑ	
		High	12	IIN			0.5	μΑ	
Interru	ıpt output INT							1	
	Output voltage	Low, RL = ∞	9	VINT	0		0.3	V	
		High R _L = ∞	9	VINT	4.75		5.25	V	
Refere	ence voltage VREF								
	Output voltage		8	VREF		Vs/2		V	
Analog	g multiplex output								
	Output voltage	RL = 10 kΩ	11	VANA	0.200		5.2	V	
Oscilla	ator								
	Input voltage		14	Vosc	50			mVRMS	
Mute			1	I				1	
	Input voltage	Low	10	V _{MUTE}	0		1	V	
		High	10	VMUTE	3		Vs	V	

10 (14) **U4275B**

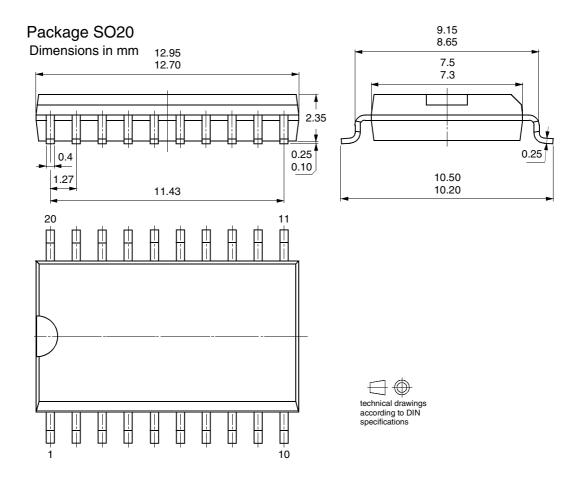

Application Circuit

Figure 5.

Package Information

Ozone Depleting Substances Policy Statement

It is the policy of Atmel Germany GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Atmel Germany GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Atmel Germany GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

Atmel Wireless & Microcontrollers Sales Offices

France

3, Avenue du Centre 78054 St.-Quentin-en-Yvelines Cedex

Tel: +33 1 30 60 70 00 Fax: +33 1 30 60 71 11

Germany

Erfurter Strasse 31 85386 Eching

Tel: +49 89 319 70 0 Fax: +49 89 319 46 21

Kruppstrasse 6 45128 Essen

Tel: +49 201 247 30 0 Fax: +49 201 247 30 47

Theresienstrasse 2 74072 Heilbronn

Tel: +49 7131 67 36 36 Fax: +49 7131 67 31 63

Italy

Via Grosio, 10/8 20151 Milano

Tel: +39 02 38 03 71 Fax: +39 02 38 03 72 34

Spain

Principe de Vergara, 112 28002 Madrid

Tel: +34 91 564 51 81 Fax: +34 91 562 75 14

Sweden

Kavallerivaegen 24, Rissne 17402 Sundbyberg Tel: +46 8 587 48 800

Fax: +46 8 587 48 850

United Kingdom

Easthampstead Road Bracknell Berkshire RG12 1LX Tel: +44 1344 707 300 Fax: +44 1344 427 371

USA Western

2325 Orchard Parkway San Jose, California 95131 Tel: +1 408 441 0311 Fax: +1 408 436 4200

USA Eastern

1465 Route 31, Fifth floor Annandale New Jersey 08801 Tel: +1 908 848 5208 Fax: +1 908 848 5232

Hong Kong

Room #1219, Chinachem Golden Plaza 77 Mody Road, Tsimhatsui East East Kowloon, Hong Kong Tel: +852 23 789 789

Fax: +852 23 789 789

Korea

25-4, Yoido-Dong, Suite 605, Singsong Bldg. Youngdeungpo-Ku 150-010 Seoul

Tel: +822 785 1136 Fax: +822 785 1137

Rep. of Singapore

Keppel Building #03-00 25 Tampines Street 92, Singapore 528877 Tel: +65 260 8223 Fax: +65 787 9819

Taiwan, R.O.C.

8F-2, 266 Sec.1 Wen Hwa 2 Rd. Lin Kou Hsiang, 244 Taipei Hsien

Tel: +886 2 2609 5581 Fax: +886 2 2600 2735

Japan

Tonetsushinkawa Bldg. 1-24-8 Shinkawa Chuo Ku Tokyo 104-0033

Tel: +81 3 3523 3551 Fax: +81 3 3523 7581

Web Site

http://www.atmel-wm.com

© Atmel Germany GmbH 2001.

Atmel Germany GmbH makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel Germany GmbH's Terms and Conditions. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel Germany GmbH are granted by the Company in connection with the sale of Atmel Germany GmbH products, expressly or by implication. Atmel Germany GmbH's products are not authorized for use as critical components in life support devices or systems.

Data sheets can also be retrieved fron the Internet: http://www.atmel-wm.com