

High-Power Dual-Band (2.4-GHz to 2.5-GHz and 4.9-GHz to 5.9-GHz) RF Front-End

FEATURES

- Highly Integrated 802.11 a/b/g Radio Frequency Front End ASIC
- Fully Integrated Up/Down Converters, LNAs, PAs and T/R Switches
- Super Heterodyne Architecture for Superior Adjacent Channel Rejection Performance
- Differential LO and IF Interface for Enhanced Spurious/EMI Performance
- Common Frequency Plan uses a Single LO and Common IF for Single IF Filter for Both Bands

- Integrated Temperature Compensated TX
 Power Detectors
- PA Bias Control Function
- Lead Free Package (TBD)
- Antenna Port OP_{1dB} = +23 dBm Typical
- Antenna Port OIP3 = +33 dBm, Typical
- Frequency Range: 2.4 to 2.5 and 4.9 to 5.9 GHz
- Noise Figure: 4 dB ISM Band, 6 dB 5 GHz Bands Typical
- Typical Gain: 38 dB TX, 20dB RX
- IF = 374 MHz

DESCRIPTION

The TRF2436 is a fully integrated Dual Band Tri Mode Radio Frequency Front End (RFFE) designed specifically for use in 802.11 a/b/g applications. The TRF2436 is designed to perform RF up and down conversions in the unlicensed ISM and 4.9-5.9 GHz bands. The TRF2436 uses a common IF frequency for both bands, eliminating the need for additional IF filtering. Combined with the TI TRF2432 IF/IQ Transceiver/Synthesizer, the TRF2436 completes the TI WLAN two-chip radio.

TEXAS INSTRUMENTS www.ti.com

The TRF2436 incorporates all of the RF blocks for both the "b/g" and "a" bands except for low cost ceramic filters. The ASIC includes LNAs, PAs, mixers, bias circuitry, RX gain control, transmit coupler detectors, and T/R switches. High integration and internal RF matching enhances performance and greatly reduce external part count. The only external components needed (other than simple passives) for operation are RF filters and external low power DC switching FETs.

V+ V+ PABCA RFA MXA ABSEL TR RFANTA RXGC T/R IF T/R T/R \neq **RFANTB** $\overline{}_{2}$ LO PABCB RFB MXB V+ DET $\frac{1}{2}$ ->

Functional Block Diagram

DEVICE INFORMATION

TERMINAL FUNCTIONS

TERMINAL		1/0	TVDE	DESCRIPTION		
NAME	NO.					
MXB	1	I/O	RF SE	B band RF Input/Output to mixer. 50- Ω single ended. Do not apply DC.		
ABSEL	2	Ι	Digital	Band select pin. HIGH = A-band. LOW = B-band.		
V+LOB	3	I	Power	B band LO amplifier bias +3.3V		
RSVD1	4	-	-	Not connected for normal operation. Leave Open.		
LOP	5	Ι	RF Dif.	LO input (differential) Positive, AC coupled		
LON	6	Ι	RF Dif.	LO input (differential) Negative, AC coupled		
IFP	7	I/O	RF Dif.	IF input/output (differential) Positive, DC coupled, typical DC Voltage is 2.6V		
IFN	8	I/O	RF Dif.	IF input/output(differential) Negative, DC coupled, typical DC Voltage is 2.6V		
MXA	9	I/O	RF SE	A band RF Input/Output to mixer. 50- Ω single ended. Do not apply DC.		

TRF2436

DEVICE INFORMATION (continued)

TERMINAL FUNCTIONS (continued)

TERMINAL		1/0		DESCRIPTION		
NAME	NO.	1/0	ITPE	DESCRIPTION		
V+LOA	10	I	Power	A band LO amplifier bias +3.3V		
V+IF	11	I	Power	IF amplifier bias +3.3V.		
V+IFP	12	I	Power	IFP amplifier bias +3.3V.		
V+IFN	13	I	Power	IFN amplifier bias +3.3V.		
RFA	14	I/O	RF SE	A Band RF Input/Output to PA/LNA. 50- Ω single ended. AC coupled.		
V+PA1A	15	I	Power	A band Power amplifier bias +3.3V.		
V+GEN	16	I	Power	DC Bias Control Bias +3.3V.		
V+PA2A	17	I	Power	A band Power amplifier bias +3.3V.		
PABCA	18	-	-	A band PA Bias Control Input		
V+PA3A	19	-	-	A band Power amplifier bias +3.3V.		
BCOUT	20	0	Analog	Bias Control Output.		
BYPIN	21	I	Analog	DC Bias Bypass Input		
BYPOUT	22	0	Analog	DC Bias Bypass Output		
GND	23, 24	-	-	Connect to ground		
RFANTA	25	I/O	RF SE	A band RF in/out to antennas. AC coupled.		
V+LNABA	26	I	Power	A and B Band LNA bias +3.3V.		
RFANTB	27	I/O	RF SE	B band RF in/out to antennas. AC coupled.		
DETN	28	0	Analog	Negative RF power detector output		
DETP	29	0	Analog	Positive RF power detector output.		
V+PA3B	30	I	Power	B band Power amplifier bias +3.3V.		
V+PA2B	31	I	Power	B band Power amplifier bias +3.3V.		
BCIN	32	I	Analog	Bias control input		
PABCB	33	-	-	B band PA Bias Control Input		
V+PA1B	34	I	Power	B band Power amplifier bias +3.3V.		
RSVD2	35	-	-	Not Connected for normal operation. Leave Open.		
RFB	36	I/O	RF SE	B band RF Input/Output to PA/LNA. 50- Ω single ended. AC coupled.		
RXDGC	37	I	Digital	Rx Gain Control. HIGH = minimum gain. LOW = maximum gain		
TR	38	I	Digital	Transmit/Receive mode control. HIGH = transmit. LOW = receive.		
LOADJB	39	-	-	Not connected for normal operation. Leave Open. B band LO amp bias adjust.		
TXGADJB	40	-	-	Not connected for normal operation. Leave open. PAB Amplifier bias adjust.		

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)

	UNIT
	0 to 6.9 V
	600 mA
Any port and any mode	+10 dBm
	-0.3 V to 5 V
	175°C
	35°C/W
	-20°C to +85°C
	-40°C to +105°C
40 sec maximum	+220°C
	Any port and any mode

DC CHARACTERISTICS

TYP ratings are at 25°C and V_{CC} = 3.3 V, MIN and MAX ratings are over operating free-air temperature and voltage ranges (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{CC}	Supply votlage	Specification compliant	2.7	3.3	4.2	V
I _{CC}	Total supply current	B Band, RX Mode		65	105	mA
		A Band, RX Mode		80	120	mA
		B Band, TX Mode, Max PABC input		410	520	mA
		A Band, TX Mode, Max PABC input		450	550	mA
V _{IH}	High-level input voltage		1.7			V
V _{IL}	Low-level input voltage				0.5	V
I _{IH}	High-level input current			100	300	μA
I _{IL}	Low-level input current				-50	μA

RECEIVER CHARACTERISTICS

TR = Low, 2dB base band filter loss in RX band, MIN, TYP, and MAX rating are at 25°C and V_{CC} = 3.3 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{IRF}	RF input frequency	B band	2400		2500	MHz
		A band	4900		5900	MHz
f _{LO}	LO input frequency	B band	2774		2874	MHz
		A band	2637		3137	MHz
f _{IF}	IF input frequency			374		MHz
G	Gain	B Band High Gain Mode RXGC=LOW	17	19		dB
		A Band High Gain Mode RXGC=LOW	18	23		dB
ΔG	Gain step size	B Band Low Gain Mode RXGC=HIGH		25		dB
		A Band Low Gain Mode RXGC=HIGH		15		dB
	Noise figure	B Band. Max Gain		4	5	dB
		A Band. Max Gain		6	7.5	dB
	Input P _{-1dB}	B Band High Gain Mode RXGC=LOW	-16	-13		dBm
		B Band Low Gain Mode RXGC=HIGH				dBm
		A Band High Gain Mode RXGC=LOW	-22	-18		dBm
		A Band Low Gain Mode RXGC=HIGH	-16	-13		dBm
	Input 3rd order intercept point	B Band High Gain Mode RXGC=LOW	-6	-2		dBm
		B Band Low Gain Mode RXGC=HIGH	4	8		dBm
		A Band High Gain Mode RXGC=LOW	-12	-8		dBm
		A Band Low Gain Mode RXGC=HIGH	-6	-3		dBm
	RF input return loss	$Z = 50 \Omega$ Both Bands, Both Gain modes	8			dB
	LNA out return loss RF	$Z = 50 \Omega$ Both Bands, Both Gain modes	9			dB
	Mixer input MX return loss	$Z = 50 \Omega$ Both Bands	10			dB

RECEIVER CHARACTERISTICS (continued)

TR = Low, 2dB base band filter loss in RX band, MIN, TYP, and MAX rating are at 25° C and V_{CC} = 3.3 V (unless otherwise noted)

P	ARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output	t return loss	Measured into 200 Ω differential	10			dB
LO at I	MX leakage	B band		-30		dBm
		A Band (5274-6274MHz)		-30		dBm
LO at	IF leakage	Both bands		-40		dBm
Gain fl	latness full band	B band		1		dB
		A band		2		dB
Gain fl	latness / 22 MHz	Both bands				dB
Gain s	settling time	Full range to within 0.5 dB final. All bands		0.3		μs
RF to	RFANT isolation	In Band: B Band High Gain Mode RXGC=LOW		30		dB
		In Band: B Band Low Gain Mode RXGC=HIGH		5		dB
		In Band: A Band High Gain Mode RXGC=LOW		25		dB
		In Band: A Band Low Gain Mode RXGC=HIGH		35		dB

TRANMITTER CHARACTERISTICS

TR = High, 2dB base band filter loss in RX band, MIN, TYP, and MAX rating are at 25°C and V_{CC} = 3.3 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
f _{IF}	IF input frequency			374		MHz
f _{ORF}	RF output frequency	B band	2400		2500	MHz
		A band	4900		5900	MHz
f _{LO}	LO input frequency	B band	2774		2874	MHz
		A band	2637		3137	MHz
G	Gain	B Band	37	40		dB
		A Band	40	43		dB
	Output 1 dB gain compression	B band. max PABC input	22	23.5		dBm
		A band. max PABC input	20.5	22.5		dBm
		5150 – 5350 MHz Max PABC input, V+PA = 2.9V min, Other V_{CC} = 2.7V min	20.5	22.5		dBm
	Output 3rd order intercept	B band	32	35		dBm
		A band	30	32.5		dBm
	Noise figure	Both bands		8		dB
	IF input return loss	Measured into 200 Ω differential	8			dB
	Mixer output return loss MX	$Z = 50 \Omega$ both bands	10			dB
	RF input return loss RF	$Z = 50 \Omega$ both bands	8			dB
	RFANT return loss	$Z = 50 \Omega$ both bands	6			dB
	LO leakage at MX	B band		-35		dBm
		A band (5274-6274MHz)		-35		dBm
	Gain flatness full band	B band		1		dB
		A band		2		dB
	Gain flatness / 22 MHz	Both bands				dB
	PA harminics	Both bands CW at P1dB			-20	dBc

PRODUCT PREVIEW

TRANMITTER CHARACTERISTICS (continued)

TR = High, 2dB base band filter loss in RX band, MIN, TYP, and MAX rating are at 25°C and V_{CC} = 3.3 V (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
RFANT to RF isolation	B band		50		dB
	A band		50		dB
PA Off Isolation RF to RFANT	In band: both bands	50			dB
PA Turn On Time	To within 0.5dB max power		0.2		μs
PA Turn Off Time	To within -20dB max power		0.2		μs
PA droop	From max power after turn-on time, Maximum on duration is 200 ms			0.5	dB
PA Bias Control Input Range (PABC)	Max Current corresponds to max PA bias state				mA

COMMON ELECTRICAL CHARACTERISTICS

MIN, TYP, and MAX ratings are at 25°C and V $_{\rm CC}$ = 3.3 V (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
TR_SEL switch time	Gain within 0.5dB. Not Including PA ramp time		0.3	1	μs
AB_SEL switch time	•			1	μs
LO input power	Reference to 100 Ω differential	-1		5	dBm
LO input return loss	Measured to 100 Ω differential at 25°C	6			
IF port impedance	Differential		200		Ω
LO port impedance			100		Ω

TYPICAL CHARACTERISTICS

A Band Detector Output

Figure 1. A Band Detector Output

TYPICAL CHARACTERISTICS (continued)

B Band Detector Output

Figure 2. B Band Detector Output

APPLICATION INFORMATION (continued)

Figure 4. Package Dimensions (Lead Free)

APPLICATION INFORMATION (continued)

Figure 5. Recommended PCB Layout

Figure 6. Tape and Reel Specifications

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com