MicroStar BGA™ Packaging Reference Guide

Literature Number: SSYZ015A Second Edition – September 1999

MicroStar BGA is a trademark of Texas Instruments Incorporated.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

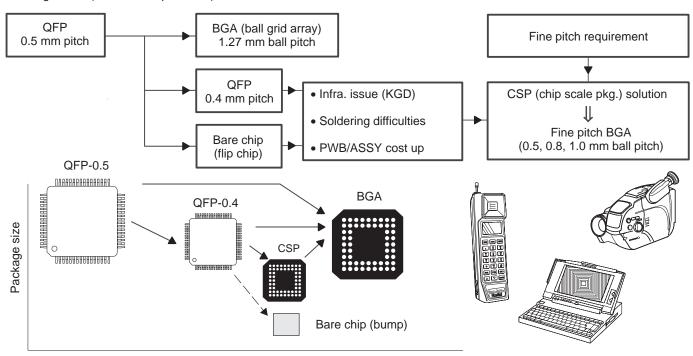
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated

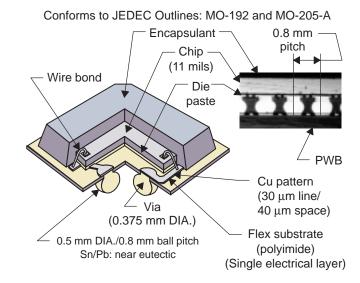

Introduction

The parallel pursuit of cost reduction and miniaturization in recent years has given rise to an increasing emphasis on very small integrated circuit (IC) package solutions. This is particularly evident in consumer-based end

equipment using digital signal processor (DSP) solutions such as wireless telephones, laptop computers, and hard-disk drives. Despite the formal definition, packages with an area similar in size to the IC they encapsulate are loosely referred to as chip scale packages (CSPs). Figure 1 illustrates this trend.

Figure 1. Packaging Trends

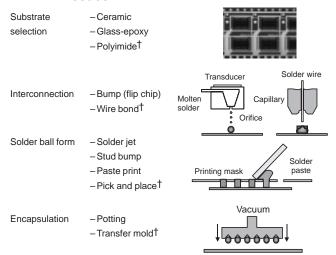
Package trend (customer requirement)



Pin count

Chip scale packages are in many ways an ideal solution to the cost reduction and miniaturization requirements. They offer enormous area reductions in comparison to quad flat packages (QFPs) and have increasing potential to do so without adding to system-level cost. In the best case, CSPs compete today on a cost-per-terminal basis with QFPs. For example, various CSPs from Texas Instruments (TI $^{\text{\tiny M}}$) are now available at cost parity with thin QFPs.

Texas Instruments produces a polyimide film-based family of CSPs called MicroStar BGA™. Like most other CSPs, MicroStar BGAs use solder alloy balls as the interconnect between the package substrate and the board on which the package is soldered. The MicroStar BGA family comes in a range of solder ball pitch (0.5 mm, 0.8 mm, and 1.0 mm). Currently, TI's most popular packages are 64- and 144-ball packages. Figure 2 shows the structure of TI's MicroStar BGA package.


Figure 2. Structure of TI's MicroStar BGA

TI and MicroStar BGA are trademarks of Texas Instruments Incorporated.

Texas Instruments addressed several key issues in package assembly in order to produce a CSP that is not only physically and mechanically stable but cost-effective for a wide variety of applications. Figure 3 demonstrates how MicroStar BGAs resolve reliability and cost issues. An overall view of the flow used to produce TI MicroStar BGA packages is shown in Figure 4. The process for solder ball attachment is shown in Figure 5.

Figure 3. MicroStar BGA Package Assembly Issues

†These are the processes used by TI.

Figure 4. MicroStar BGA Package Assembly Flow

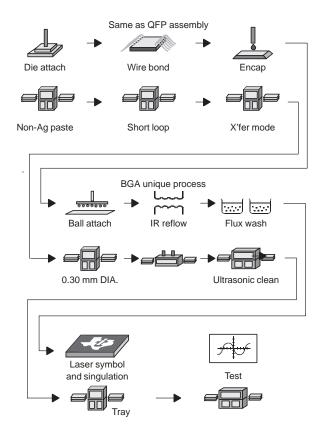
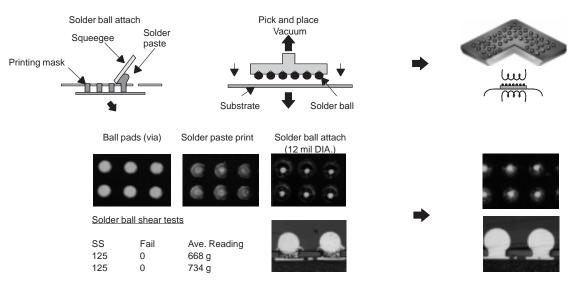



Figure 5. Solder Ball Attachment

144GGU, 0.8-mm pitch, 0.5 mm DIA. ball TI spec. is 400 g min

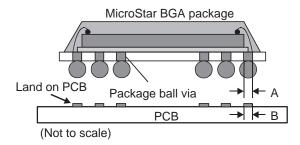
Texas Instruments has qualified many product lines using the MicroStar BGA packages, and has now shipped more than 70 million production units. This guide is designed to give you technical background on MicroStar BGA packages as well as how they can be used to build advanced board layouts.

If you would like more information on using reliable and cost-effective MicroStar BGA packaging in your design, please contact your local TI field sales office.

Contents

	Conductor High-Density Via Density Convention	nd Areas Width/Spacing ity Routing Techniques / nal PCB Design Design Methods	1–2 1–3 1–4
2 Rel	Daisy-Chai Reliability I Reliability (Package C Thermal M	ined Units Data Calculations Characteristics odeling Modeling	2–2 2–2 2–4 2–6 2–6
3 Sur	Design for Solder Pas Solder Ball Reflow	ing MicroStar BGA Packages Manufacturability (DFM) ste Collapse	3–2 3–2 3–3
4 Pac	Trays Tape-and-F Tape Form Device Inse	Reel Packing Method	4–2 4–4 4–5
5 Soc	The Desigr Contacting Establishin	n Challengethe Ballg Contact Forces and Future Work	5–2 5–2 5–3
6 Ref	erences		6–1
Apper	Package Q	equently Asked Questions	A–1
Apper	80GJK 167GJJ 151GHZ 100GGM 64GGV 80GGM 100GGF 100GGT 144GGU 179GHH 176GGW 208GGW 240GGW 196GHC 257GHK	(Pitch = 0.5 mm; Size = 6 x 6 mm) (Pitch = 0.5 mm; Size = 8 x 8 mm) (Pitch = 0.5 mm; Size = 10 x 10 mm) (Pitch = 0.8 mm; Size = 10 x 10 mm) (Pitch = 0.8 mm; Size = 8 x 8 mm) (Pitch = 0.8 mm; Size = 8 x 8 mm) (Pitch = 0.8 mm; Size = 10 x 10 mm) (Pitch = 0.8 mm; Size = 10 x 10 mm) (Pitch = 0.5 mm; Size = 10 x 10 mm) (Pitch = 0.8 mm; Size = 11 x 11 mm) (Pitch = 0.8 mm; Size = 12 x 12 mm) (Pitch = 0.8 mm; Size = 12 x 12 mm) (Pitch = 0.8 mm; Size = 15 x 15 mm) (Pitch = 0.8 mm; Size = 15 x 15 mm) (Pitch = 0.8 mm; Size = 15 x 15 mm) (Pitch = 1.0 mm; Size = 15 x 15 mm) (Pitch = 0.8 mm; Size = 16 x 16 mm) (Pitch = 0.8 mm; Size = 16 x 16 mm)	B-2 B-3 B-4 B-5 B-6 B-7 B-8 B-10 B-11 B-13 B-14 B-15

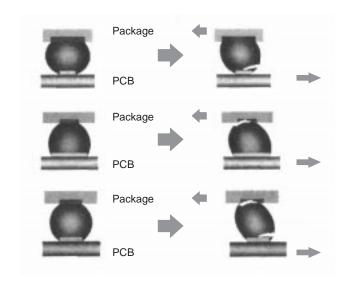
List of Figures


Figure	 	Page
1	Packaging Trends	_
2	Structure of TI's MicroStar BGA	ii
3	MicroStar BGA Package Assembly Issues	iv
4	MicroStar BGA Package Assembly Flow	iv
5	Solder Ball Attachment	iv
6	Package Via to Board Land Area Configuration	1–2
7	Effects of Via-to-Land Ratios	1–2
8	Optimum Land Configurations	1–2
9	PCB Design Considerations (Conventional)	1–3
10	Microvia Structure	1–3
11	"Dog Bone Via" Structure	1–4
12	Buried Vias	1–4
13	Daisy-Chained Pinout List	2-2
14	General Net List	
15	PCB Layout for Daisy-Chained Unit	2–2
16	Daisy-Chain Test Configuration	2–3
17	Board-Level Reliability Test Boards	2–4
18	Board-Level Reliability Test Data	2–4
19	Thermal Modeling Process	2–6
20	Electrical Modeling Process	
21	Solder Ball Collapse	3–3
22	Ideal Reflow Profile	3–4
23	Shipping Tray Detail	
24	Packing Method for Trays	
25	Single Sprocket Tape Dimensions	
26	Reel Dimensions	
27	Tape-and-Reel Packing	
28	Approaches for Contacting the Solder Ball	
29	Pinch Contact for Solder Balls	
30	Contact Area on Solder Ball	
31	Witness Marks on Solder Ball	
32	Effect of Burn-in on Probe Marks	
33	TI's Strategic Package Line-Up	B–′
	f Tables	Dare
Table ₁	Package Level Poliability Tests	Page
1	Package-Level Reliability Tests	
2	Package-Level Reliability Test Results	
3 4	Board-Level Reliability Summary	
4 5	Summary of Significant BLR Improvements Effects of Pad Size and Board Thickness on Fatigue Life	
5 6	Number of Units per Shipping Tray	
7	Tape Dimensions	
8	Reel Dimensions	
9		

1 PCB Design Considerations

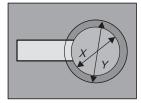
Solder Land Areas

Design of both the MicroStar BGA itself and the printed circuit board (PCB) are important in achieving good manufacturability and optimum reliability. In particular, the diameters of the package vias and the board lands are critical. While the actual sizes of these dimensions are important, their ratio is more critical. Figure 6 illustrates the package via-to-PCB configuration and Figure 7 illustrates why this ratio is critical.


Figure 6. Package Via to Board Land Area Configuration

A = Via diameter on package B = Land diameter on PCB

Ratio A/B should equal 1.0 for optimum reliability.


Figure 7. Effects of Via-to-Land Ratios

In the top view of Figure 7, the package via is larger than the PCB via, and the solder ball is prone to crack prematurely at the PCB interface. In the middle view, the PCB via is larger than the package via, which leads to cracks at the package surface. In the bottom view, where the ratio is almost 1:1, the stresses are equalized and neither site is more susceptible to cracking than the other.

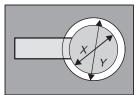

Solder lands on the PCB are generally simple round pads. Solder lands are either solder-mask-defined or non-solder-mask-defined.

Figure 8. Optimum Land Configurations

Solder-mask-defined Land

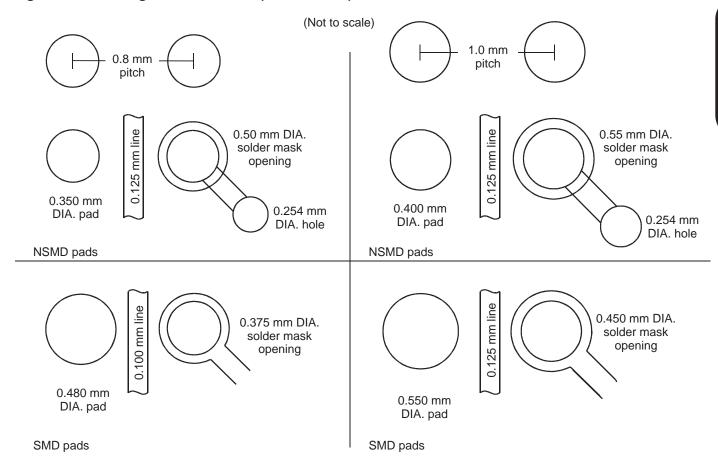
X DIA.	Y DIA.
(In devel	opment)
0.38 mm	0.48 mm
0.45 mm	0.55 mm
	(In devel 0.38 mm

Non-solder-mask-defined Land

Ball Pitch	X DIA.	Y DIA.
0.5 mm	(In devel	opment)
0.8 mm	0.35 mm	0.50 mm
1.0 mm	0.4 mm	0.55 mm

Solder-mask-defined (SMD) land. With this method, the copper pad is made larger than the desired land area, and the opening size is defined by the opening in the solder mask material. The advantages normally associated with this technique include more closely controlled size and better copper adhesion to the laminate. Better size control is the result of photoimaging the stencils for masks. The chief disadvantage of this method is that the larger copper spot can make routing more difficult.

Non-solder-mask-defined (NSMD) land. Here, the land area is etched inside the solder mask area. While the size control is dependent on copper etching and is not as accurate as the solder mask method, the overall pattern registration is dependent on the copper artwork, which is quite accurate. The tradeoff is between accurate dot placement and accurate dot size.

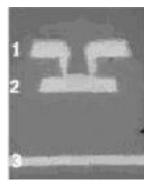

See Figure 8 for an example of optimum land diameters and configurations for a common MicroStar BGA pitch.

Conductor Width/Spacing

Many of today's circuit board layouts are based on at most a 100- μm conductor line width and 200- μm spacing. To route between 0.8-mm-pitch balls, given a clearance of roughly 380 μm between ball lands, only one signal can be routed between ball pads. The 380- μm ball spacing is worst case and is calculated by assuming the diameter of the solder ball land is 410 μm .

Figure 9 presents some design considerations based on commonly used PCB design rules. Conventionally, the pads are connected by wide copper traces to other devices or to plated through holes (PTH). As a rule, the mounting pads must be isolated from the PTH. Placing the PTH interstitially to the land pads often achieves this.

Figure 9. PCB Design Considerations (Conventional)


High-Density Routing Techniques

A challenge when designing with CSP packages is that as available space contracts, the space available for signal fanout also decreases. By using a few high-density routing techniques, the PCB designer can minimize many of these design and manufacturing challenges. This section focuses on TI designators GGU (144-pin) and GGW (176-pin) packages. Both packages have 0.8-mm pitch, but each is distinctly different in array style. The GGW ball array has wide channels in the four corners, providing the inner balls with space for routing and $V_{\rm CC}$ connectivity. Mechanical drawings of these MicroStar BGA packages can be found in Appendix B. The GGU package has a solid four-row array configuration which can cause difficulties when routing inner rows on two-layer boards.

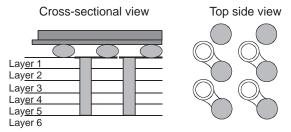
Via Density

Via density, as mentioned earlier, can be a limiting factor when designing high-density boards. Via density is defined as the number of vias in a particular board area. Using smaller vias increases the routability of the board by requiring less board space and increasing via density. The invention of the microvia, shown in Figure 10, has solved many of the problems associated with via density.

Figure 10. Microvia Structure

Microvias are often created using a laser to penetrate the first few layers of dielectric. The laser can penetrate a 4-mil-thick dielectric layer, creating the 4-μm microvia shown in Figure 10. The layout designer can now route to the first internal board layer. Two layers (each 4 mils thick) can be laser-drilled, creating a 200-μm microvia diameter. In this case, routing to the first two internal layers is possible.

The number of board layers increases as board chip density and functional pin count increase. As an example, the TMS320VC549GGU digital signal processor (DSP) is in a 144-GGU package and uses 32 balls for power and ground. Routing of roughly

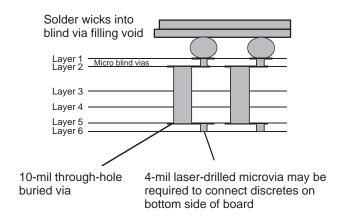

112 signals can be accomplished on three layers. The power and ground planes increase the board to five layers. The sixth layer can be used on the bottom side to place discrete components. Furthermore, by increasing the board layer stack-up to eight layers, high-density applications are possible with only 10 to 15 mils between the chips.

Conventional PCB Design

The relatively large via density on the package periphery, mentioned earlier, is caused by limited options when routing the signal from the ball. To reduce or eliminate the via density problem on the periphery of the package, designers can build the PCB vertically from the BGA pad through the internal layers of the board, as shown in Figure 11. By working vertically and mechanical drilling 250-um vias between the pads on the board and the internal lavers. designers can create "pick-and-choose" method. They can pick the layer and choose the route. A "dog bone" method is used to connect the through-hole via and the pad.

This method requires a very small mechanical drill to create the necessary number of 144 or 176 vias for one package. Although this method is the least expensive, a disadvantage is that the vias go through the board, creating a matrix of vias on the bottom side of the board.

Figure 11. "Dog Bone Via" Structure


Advanced Design Methods

Another option is to use a combination of blind and buried vias. Blind vias connect either the top or bottom side of the board to inner layers. Buried vias usually connect only the inner layers. Figure 12 illustrates this method using 4-mil laser-drilled microvias in the center of the pads and burying the dog bone on layer 2.

Since the buried via does not extend through the underside of the board, the designer can use another set of laser-drilled blind microvias, if needed, to connect the bypass capacitors and other discrete components to the bottom side.

More information on these advanced techniques is available by contacting your local TI field sales office.

Figure 12. Buried Vias

2 Reliability

Daisy-Chained Units

Daisy-chained units are used to gain experience in the handling and mounting of CSPs, for board-reliability testing, to check PCB electrical layouts, and to confirm the accuracy of the mounting equipment. To facilitate this, Texas Instruments offers daisy-chained units in all production MicroStar BGA packages.

Each daisy-chained pinout differs slightly depending on package layout. An example is shown in Figure 13. Daisy-chained packages are wired to provide a continuous path through the package for easy testing. TI issues a net list for each package, which correlates each ball position with a corresponding wire pad number. The daisy-chained net list is a special case of the general net list shown in Figure 14. Package net lists and daisy-chained net lists for all production packages are included in Appendix B.

A PCB layout for a 144-GGU daisy-chained package is shown in Figure 15. When a daisy-chained package is assembled on the PCB, a complete circuit is formed, which allows continuity testing. The circuit includes the solder balls, the metal pattern on the die, the bond wires, and the PCB traces. The entire package or only a quadrant can be interconnected and tested. A diagram of the test configuration is shown in Figure 16.

Figure 13. Daisy-Chained Pinout List

11 10 9 8 7 6 5 4 3 3

100GGT Top View

A B C D E F G H J K L

B10 B2 C2 D2 E2 F2 F1 G2 H1 K2 K3 K4 K5 K6 L6 B1 C1 D1 F3 E1 G1 G3 H2 H4 B9 B8 A7 C6 A6 L3 L4 J6 L5 A9 B7 C7 B6 J11 H10 G9 G10 F9 G11 F10 F11 L7 K7 K8 L9 L8 J7 B5 C5 F11 D11 A5 D4 B4 A3 C3 D3 E10 E9 Н3 J8 H8 D10 C11 D8 C10 B11 C8 J3 J4 K9 L10

NC – E3, J5, H11, A8

Reliability Data

Reliability is one of the first questions designers ask about any new packaging technology. They want to know how well the package will survive handling and assembly operation, and how long it will last on the board. The elements of package reliability and system reliability, while related, focus on different material properties and characteristics and are tested by different methods.

Figure 14. General Net List

Index

Figure 15. PCB Layout for Daisy-Chained Unit

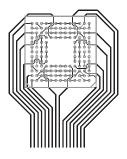
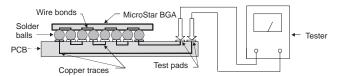



Figure 16. Daisy-Chain Test Configuration

Package reliability focuses on materials of construction, thermal flows, material adherence/delamination issues, resistance to high temperatures, moisture resistance and ball/stitch bond reliability. Thorough engineering of the package is performed to prevent delamination caused by the interaction of the substrate material and the mold compound.

TI subjects each MicroStar BGA to rigorous qualification testing before the package is released to production. These tests are summarized in Table 1. All samples used in these tests are preconditioned according to Joint Electronic Device Committee (JEDEC) A113 at various levels. Typical data is presented in Table 2. MicroStar BGA packages have proven robust and reliable.

Board-level reliability (BLR) issues generally focus on the complex interaction of various materials under the influence of heat generated by the operation of electronic devices. Not only is there a complex thermal situation caused by multiple heat sources, but there are cyclical strains due to expansion mismatches, warping and transient conditions, non-linear material properties, and solder fatigue behavior influenced by geometry, metallurgy, stress relaxation phenomenon, and cycle conditions. In addition to material issues, board and package design can influence reliability. Thermal management from a system level is critical for optimum

reliability, and thermal cycling tests are generally used to predict behavior and reliability. Many of these are used in conjunction with solder fatigue life models using a modified Coffin-Manson strain range-fatigue life plots.

Table 1. Package-Level Reliability Tests†

Test Environments	Conditions	Read Points
HAST	85RH/85°C	600 hrs. 1000 hrs.
Autoclave	121°C, 15 psig	96 hrs. 240 hrs.
Temp. Cycle	–55/125°C –65/150°C‡	500 cycles 750 cycles 1000 cycles
Thermal Shock	–65/150°C‡ –55/125°C	200 cycles 500 cycles 750 cycles 1000 cycles
HTOL	125°C, Op. voltage	500 hrs. 600 hrs. 1000 hrs.
HTOL‡	140°C, Op. voltage	500 hrs.
HTOL‡	155°C, Op. voltage	240 hrs.
Bake‡	150°C 170°C	600 hrs. 1000 hrs. 420 hrs.
HAST‡	130°C	96 hrs.

[†] All samples used in these tests are preconditioned according to Joint Electronic Device Committee (JEDEC) A113 at various levels.

Table 2. Package-Level Reliability Test Results

				Package Types				
	Leads	64	80		44	19	96	
	Body (mm)	8 x 8	10 x 10	12	x 12	15 :	x 15	
	Device	MSP	ASP	D	SP	D	SP	
	Die (mm)	5.3 x 5.8	7.5 x 7.5	9.3	x 9.5			
	Level	4	2	2a	4	;	3	
Test Env	ironment	Failures/Sample Size						
Autoclave	(240 hrs.)	0/70	0/78	0/77	0/77	0/77		
T/C, -55/125°C	(1000 cycles)	0/116	0/78	0/77	0/77	0/76		
T/S, -65/150°C	(500 cycles) (750 cycles) (1000 cycles)	0/116	0/78	0/77	0/77	0/77		
HAST, 85°C/85%RH	(1000 hrs.) (1250 hrs.)	0/115		0/77		0/78		
150°C Storage	(600 hrs.) (1000 hrs.)	0/43	0/78		0/77	0/77	0/77	
HTOL	(1000 hrs.)	0/116						

[‡] Optional tests. One or more of them may be added to meet customer requirements.

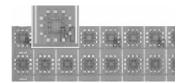
In addition to device/package testing, board-level reliability testing has been extensively performed on the MicroStar BGA packages. Various types of daisy-chained packages were assembled to special boards shown in Figure 17. Electrical measurements

Figure 17. Board-Level Reliability Test Boards

Board Material FR-4

Structure: Two external metal layers

Traces: 1oz cu design rule 100 μm (4 mils) width, 100 μm (4 mils) space Paste: Eutectic


(SENJU 63-330F-21-10.5) Paste thickness: $0.15~\mu m$ Board thickness: 31~mils

Reflow profile: 225°C max, time above 200°C is 50 sec, time above 150°C

is 240 sec
Screen opening: match
land pad diameter
Precondition: Level 3

TI-Houston test board

TI-HIJI test board

were made in the initial state and then at intervals after temperature cycles were run. The overall test conditions are shown in Figure 18. A summary of a wide range of board-level reliability is shown in Table 3. This data includes testing by TI and by end manufacturers.

Table 4 summarizes conclusions from the testing. Two important conclusions are that the PCB pad size needs to match the via size, and that solder paste is needed for attachment to give optimal reliability.

Reliability Calculations

Another important aspect of predicting how a package will perform in any given application is reliability modeling. Thermal, electrical, and thermomechanical modeling, verified by experimental results, provide insight into system behavior, shorten package

Figure 18. Board-Level Reliability Test Data

Test condition: Open short @25°C, 10% resistance

change or 200 Ω

Sample size: Greater or equal to 32

Temperature cycle range: -40°C to 125°C

Sampling rate: Every 100 cycles, up to first failure; every 50 cycles thereafter up to 1000 cycles; every 100 cycles between 1000 to 1500 cycles; every 250 cycles between 1500 to 2500 cycles; Test stopping point min (2500 cycles, 50% failures)

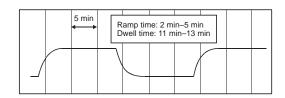


Table 3. Board-Level Reliability Summary

								Failur	es/Sample	Size		
Conditions (With Solder Paste)						R	equireme	ents		Extende	d Range	
Package	TI Mfg Site Test Site	Body (mm)	Pitch (mm)	Die (mm)	Temp. Cycle (°C)	500	800 (Cycles	1000	1100	1200 (Cyc	1300 cles)	1500
GGU 144 balls	TI HIJI TI HIJI	12 x 12	0.8	8.8 x 8.8	-40/125	0/85	0/85	0/85	4/85	5/77	5/72	15/39
GGU 144 balls	TI Philippines TI HIJI	12 x 12	0.8	8.8 x 8.8	-40/125	0/36	0/36	0/36	0/36	0/36	0/36	1/35
GGF 100 balls	TI HIJI TI HIJI	10 x 10	0.5	6.6 x 6.6	-25/125	0/32	0/32	0/32	0/32	0/32	0/16	6/16
GHC 196 balls	TI TIPI TI Hou	15 x 15	1.0	8.8 x 8.8	-40/125	0/62	0/62	0/62	0/62	0/62	0/62	4/62
GGU 144 balls	TI Philippines Customer A	12 x 12	0.8	8.8 x 8.8	-40/100	0/180	0/180	0/180	0/180	-	-	-
GGW 176 balls	TI HIJI Customer B	15 x 15	0.8	6.6 x 6.6	-25/125	0/35	0/35	0/35	0/35	0/35	0/35	1/35
GGM 80 balls	TI HIJI Customer C	10 x 10	0.8	5.0 x 5.0	-40/125	0/12	0/12	0/12	-	-	-	0/10

Table 4. Summary of Significant BLR Improvements

Condition	Im	mproved BLR ⇒			
Die size	Larger	\Rightarrow	Smaller		
Die edge	Over balls	\Rightarrow	Within ball matrix		
Ball count	Smaller	\Rightarrow	Larger		
Ball size	Smaller	\Rightarrow	Larger		
PCB pad size	Over/undersized	\Rightarrow	Matches package via (for NSMD ~90% of via)		
Solder paste	None or insufficient	\Rightarrow	Thickness 0.15 nom. (type matches reflow)		

development time, predict system lifetimes, and provide an important analytical tool. In applications such as BGAs, where the interconnections are made through solder balls, the useful life of the package is, in most cases, dependent on the useful life of the solder itself. This is an area that has been studied extensively, and very accurate models for predicting both solder behavior and interpreting accelerated life testing exist.

The current methodology employed at Texas Instruments includes both extensive model refinement and constant experimental verification. For a given package, a detailed 2D Finite Element Model (FEM) is constructed. This model will be used to carry out 2D plain strain elastoplastic analysis to predict areas of high stress. These models also account for the thermal variation of material properties, such as Modulus of Elasticity, Coefficient of Thermal Expansion, and Poisson's Ratio as a function of temperature. These allow the FEM to calculate the thermomechanical plastic strains in the solder joints for a given thermal loading.

The combination of Finite Element Analysis (FEA), accurate thermal property information, and advanced statistical methods allows prediction of the number of cycles to failure for various probability levels. Using the assumption that cyclic fatigue lifetime follows a Weibull distribution, various probability levels can be calculated. For these calculations, the Weibull shape parameter used is $\beta=4$, which is based on experimental data calibration. It is also consistent with available experimental data found in the literature for leadless packages. This then results in the following equation:

$$Nf(x\%) = Nf(50\%)[ln(1-0.01x)/ln(0.5)]1/\beta$$

Using this equation, and using the plastic strain ϵp in combination with the S-N curves, the data below is an example of the accuracy possible with this method:

Sample Finite Element Simulation and Life Prediction:

144 GGU @ T/C: -40/125°C

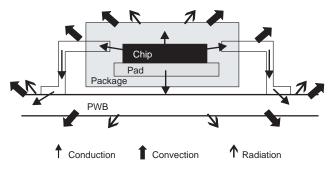
 $\{\text{Model}\}\rightarrow \epsilon p = 0.353\%$ on the outmost joint $\rightarrow \text{Nf}(50\%) = 4434$ cycles

→ Nf(1%) = 1539 cycles

{BLR Testing}→ -40/125°C (10 min/10 min)

 \rightarrow Nf(1%) = 1657 cycles

Modeling is most useful in exploring changes in materials, designs and process parameters without the need to build experimental units. For example, modeling was used to study the effects of changes in board thickness and pad size. Table 5 shows the simulated effects of pad size and board thickness on the fatigue life of a 144-GGU package.


Table 5. Effects of Pad Size and Board Thickness on Fatigue Life

 Example1: Effects of pad size on fatigue life Package: 144 GGU Die: 8.8 x 8.8 x 0.279 mm 	Pad Dia. (mils)	Pad Standoff (mm)	Solder Center Dia. (mm)	Plastic Strain (%)	Nf (1%) (cycles to failure)	Difference
Board: FR-4 board 52 mils thick	12	0.3847	0.4908	0.4400	998	0.88x
	13	0.3689	0.4951	0.4127	1134	1
	14	0.3523	0.5005	0.3908	1263	1.11x
	15	0.3350	0.5060	0.3741	1377	1.21x
Example 2: Effects of board thickness on fatigue life	Board Thickness	Plastic	Nf (1%) (cycles to			
Package: 144 GGU	(mils)	Strain (%)	failure)	Difference		
 Die: 8.8 x 8.8 x 0.279 mm Board: FR-4 	50	0.4095	1152	1		
Pad Size: 13 mils	31	0.393	1249	1.08x		

Package Characteristics

Instruments Texas has extensive package characterization capabilities, including an electrical measurements lab with TDR/LRC (Time Domain Reflectometer/inductance resistance capacitance) and network analysis capabilities, a thermal measurements lab with JEDEC standard test conditions up to 1000 watts, and extensive electrical, thermal, and mechanical modeling capability. Modeling was implemented at TI starting in 1984. Stress analysis is done with the Ansys Analysis tool, which provides full linear, nonlinear, 2D and 3D capabilities for solder reliability, package warpage, and stress analysis studies. An internally developed tool (PACED™) is used for electrical modeling that gives 2.5D and full 3D capability for LRC models, transmission lines, lossy dielectrics, and SPICE deck outputs. The thermal modeling tool was also internally developed (ThermCAL™) and it provides full 3D automatic mesh generation for most packages.

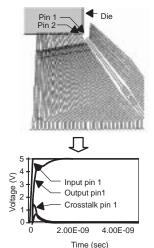
Figure 19. Thermal Modeling Process
Heat-Transfer Paths

(TQFP shown for illustration purposes)

- · Model's three heat-transfer mechanisms:
 - Conduction
 - Convection
 - Radiation
- · Method:
 - Define solidMesh solid
 - Solve large number of simultaneous equations relating each defined mesh point to each other
- · Sources of error:
 - Convection coefficients
 - Material properties
 - Solid definition inaccuracies

Complex geometries, transient analysis, and anisotropic materials can be modeled with it. With these capabilities, a full range of modeling from device level through system level can be provided. Package modeling is used to predict package performance at the design stage, to provide a package development tool, to aid qualification by similarity, and is used as a failure analysis tool.

Thermal Modeling


Figure 19 outlines the thermal modeling process. Data for each package is included in Appendix B.

Electrical Modeling

Figure 20 outlines the electrical modeling process. Data for each package is included in Appendix B.

Figure 20. Electrical Modeling Process

- Calculates inductances, capacitances, resistances, transmission line characteristics of package geometries
- Uses as loads for circuit simulation
- Process
 - Select solution algroithms for problem domain
 - Identify package structures to be modeled
 - Generate spice deck of package parameters
 - Simulate impact on driver output waveforms
 - Calculate ground/power bounce

3 Surface-Mounting MicroStar BGA Packages

Surface-mount technology (SMT) has evolved over the past decade from an art into a science with the development of design guidelines and rules. While these guidelines are specific enough to incorporate many shared conclusions, they are general enough to allow flexibility in board layouts, solder pastes, stencils, fixturing, and reflow profiles. From experience, most assembly operations have found MicroStar BGA packages to be robust, manufacturing-friendly packages that fit easily within existing processes and profiles. In addition, they do not require special handling. However, as ball pitch becomes smaller, layout methodology and placement accuracy become more critical. Below is a review of the more important aspects surface-mounted CSPs. The suggestions provided may aid in efficient, cost-effective production.

Design for Manufacturability (DFM)

A well-designed board that follows the basic surface-mount technology considerations greatly improves the cost, cycle time, and quality of the end product. Board design should comprehend the SMT-automated equipment used for assembly, including minimum and maximum dimensional limits and placement accuracy. Many board shapes can be accommodated, but the front of the board should have a straight and square edge to help machine sensors detect it. While odd-shaped or small boards can be assembled, they require panelization or special tooling to process in-line. The more irregular the board—non-rectangular with no cutouts—the more expensive the assembly cost.

Fiducials (the optical alignment targets that align the module to the automated equipment) should allow vision-assisted equipment to accommodate the shrink and stretch of the raw board during processing. They also define the coordinate system for all automated equipment, such as printing and pick-and-place. The following guidelines may be helpful:

- Automated equipment requires a minimum of two and preferably three fiducials.
- A wide range of fiducial shapes and sizes can be used. Among the most useful is a circle 1.6 mm in diameter with an annulus of 3.175/3.71 mm. The outer ring is optional, but no other feature may be within 0.76 mm of the fiducial.
- The most useful placement for the fiducials is an L configuration, which is orthogonal to optimize the stretch/shrink algorithms. When possible, the lower left fiducial should be the design origin (coordinate 0,0).
- All components should be within 101.6 mm of a fiducial to guarantee placement accuracy. For large boards or panels, a fourth fiducial should be added.

If the edges of the boards are to be used for conveyer transfer, a cleared zone of at least 3.17 mm should be allowed. Normally, the longest edges of the board are used for this purpose, and the actual width is dependent on equipment capability. While no component lands or fiducials can be in this area, breakaway tabs may be.

Interpackage spacing is a key aspect of DFM, and the question of how close you can safely put components to each other is a critical one. The following component layout considerations are recommendations based on TI experience:

- There should be a minimum of 0.508 mm between land areas of adjacent components to reduce the risk of shorting.
- The recommended minimum spacing between SMD discrete component bodies is equal to the height of the tallest component. This allows for a 45° soldering angle in case manual work is needed.
- Polarization symbols need to be provided for discrete SMDs (diodes, capacitors, etc.) next to the positive pin.
- Pin-1 indicators or features are needed to determine the keying of SMD components.
- Space between lands (under components) on the backside discrete components should be a minimum of 0.33 mm. No open vias may be in this space.
- The direction of backside discretes for wave solder should be perpendicular to the direction through the wave
- Do not put SMT components on the bottom side that exceed 200 grams per square inch of contact area with the board.
- If space permits, symbolize all reference designators within the land pattern of the respective components.
- It is preferable to have all components oriented in well-ordered columns and rows.
- Group similar components together whenever possible.
- Room for testing needs to be allowed.

Solder Paste

TI recommends the use of paste when mounting MicroStar BGAs. The use of paste offers the following advantages:

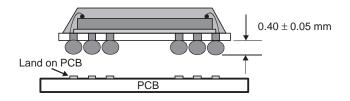
- It acts as a flux to aid wetting of the solder ball to the PCB land.
- The adhesive properties of the paste will hold the component in place during reflow.

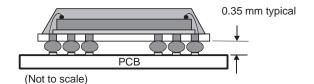
- It helps compensate for minor variations in the planarity of the solder balls.
- Paste contributes to the final volume of solder in the joint, and thus allows this volume to be varied to give an optimum joint.

Paste selection is normally driven by overall system assembly requirements. In general, the "no clean" compositions are preferred due to the difficulty in cleaning under the mounted component. Most assembly operations have found that no changes in existing pastes are required by the addition of MicroStar BGA, but due to the large variety of board designs and tolerances, it is not possible to say this will be true for any specific application.

Nearly as critical as paste selection is stencil design. A proactive approach to stencil design can pay large dividends in assembly yields and lower costs. In general, MicroStar BGA packages are special cases of BGA packages, and the general design guidelines for BGA package assembly applies to them as well. There are some excellent papers on BGA assembly, so only a brief overview of issues especially important to MicroStar BGA packages will be presented here.

The typical stencil hole diameter should be the same size as the land area, and 125- to 150-µm-thick stencils have been found to give the best results. Good release and a consistent amount of solder paste and shapes are critical, especially as ball pitches decrease. The use of metal squeegee blades, or at the very least, high durometer polyblades, is important in achieving this. Paste viscosity and consistency during screening are some variables that require close control.


Solder Ball Collapse


In order to produce the optimum solder joint, it is important to understand the amount of collapse of the solder balls, and the overall shape of the joint. These are a function of:

- The diameter of the package solder ball via.
- The volume and type of paste screened onto the
- The diameter of the PCB land.
- The board assembly reflow conditions.
- The weight of the package.

The original ball height on the package for a typical 0.8-mm-pitch package is 0.40 mm. After the package is mounted, this typically drops to 0.35 mm, as illustrated in Figure 21.

Figure 21. Solder Ball Collapse

Controlling the collapse, and thus defining the package standoff, is critical to obtaining the optimum joint reliability. Generally, a larger standoff gives better solder reducing the board land diameter. Reducing the land diameter will increase the standoff but will also the minimum. the minimum cross-section area of the joint. This, in turn, will increase the maximum shear force at the PCB side of the solder joint. Thus, a reduction of land diameter will normally result in a worse fatigue life, and should be avoided unless all the consequences are well understood.

Reflow

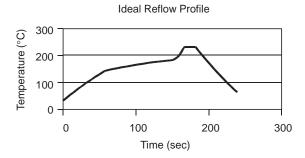
Solder reflow conditions are the next critical step in the mounting process. During reflow, the solvent in the solder paste evaporates, the flux cleans the metal surfaces, the solder particles melt, wetting of the surfaces takes place by wicking of molten solder, the solder balls collapse, and finally solidification of the solder into a strong metallurgical bond completes the process. The desired end result is a uniform solder structure strongly bonded to both the PCB and the package with small or no voids and a smooth, even fillet at both ends. Conversely, when all the steps do not carefully fit together, voids, gaps, uneven joint thickness, discontinuities, and insufficient fillet can occur. While the exact cycle used depends on the reflow system and paste composition, there are several key points all successful cycles have in common.

The first of these is a warm-up period sufficient to safely evaporate the solvent. This can be done with a pre-heat or a bake, or, more commonly, a hold in the cycle at evaporation temperatures. If there is less solvent in the paste (such as in a high-viscosity, high-metal-content paste), then the hold can be shorter. However, when the hold is not long enough to get all of the solvent out or too fast to allow it to evaporate, many negative things happen. These range from solder-particle splatter to

trapped gases, which can cause voids and embrittlement. A significant number of reliability problems with solder joints can be solved with the warm-up step, so it needs careful attention.

The second key point that successful reflow cycles have in common is uniform heating across the package and the board. Uneven solder thickness and non-uniform solder joints may be an indicator that the profile needs adjustment. There can also be a problem when different sized components are reflowed at the same time. Care needs to be taken when profiling an oven to be sure that the indicated temperatures are representative of what the most difficult to reflow parts are seeing. These problems are more pronounced with some reflow methods, such as infrared (IR) reflow, than with others, such as forced hot-air convection.

Finally, successful reflow cycles strike a balance among temperature, timing, and length of cycle. Mistiming may lead to excessive fluxing activation, oxidation, excessive voiding, or even damage to the package. Heating the paste too hot too fast before it melts can also dry the paste, which leads to poor wetting. Process development is needed to optimize reflow profiles for each solder paste/flux combination.


The profile shown in Figure 22 is an ideal one for use in a forced-air-convection furnace, which is the most highly recommended type. The best results have been found in a nitrogen atmosphere.

The guidelines upon which this profile is based, also shown in Figure 22, are general. Modification to the ideal reflow profile will be driven by the interplay of solder-paste particle size and flux percentage with process variables such as heating rates, peak temperatures, board construction factors and atmosphere. These modifications are dependent upon specific applications.

It should be noted that while they are more rugged than most CSP-type packages, many MicroStar BGA packages are still slightly moisture-sensitive at the time of printing of this Reference Guide. The time out of a dry environment should be controlled according to the label on the packing material. This will prevent moisture absorption problems with the package such as "popcorning," or delamination.

Figure 22. Ideal Reflow Profile

RT to 140°C: 60–90 sec 140°C to 180°C: 60–120 sec Time above 183°C: 60–150 sec Peak temperature: 220°C \pm 5°C Time within 5°C peak temperature: 10–20 sec Ramp-down rate: 6°C/sec maximum

Note: This is an ideal profile, and actual conditions obtained in any specific reflow oven will vary. This profile is based on convection or RF plus forced convection heating.

Other concerns with BGA packages are those caused by a PCB bowing or twisting during reflow. As PCBs get thinner, these problems will become more significant. Potential problems from these effects will show up as open pins, hourglass solder joints, or solder discontinuities. Proper support of the PCB through the furnace, balancing the tab attachments to a panel, and, in worst cases, using a weight to stiffen the PCB can help prevent this. In general, the small size of CSPs create fewer problems than standard BGAs. It is also true that BGAs generally have fewer problems than leaded components.

Inspection

MicroStar BGA packages have been designed to be consistent with very high-vield assembly processes. Because of their relatively light weight, MicroStar BGA packages tend to self-align during reflow. Since the pitch of the ball pattern is large compared to that of fine-pitch leaded packages, solder bridging is rarely encountered. It is recommended that a high-quality solder joint assembly process be developed using the various inspection and analytical techniques, such as cross-sectioning. Once a quality process has been developed, detailed inspection should not be necessary. Visual methods, while obviously limited, can offer valuable clues to the general stability of the process. Electrical checks can confirm interconnection. Both transmission X-rays and laminographic X-rays have proven to be useful nondestructive tools, if desired.

4 Packing and Shipping

MicroStar BGAs are shipped in either of two packing methods:

- Trays
- Tape and reel

Trays

Thermally resistant plastic trays are currently used to ship the majority of the packages. Each family of parts with the same package outline has its own individually designed tray. The trays are designed to be used with pick-and-place machines. Figure 23 gives typical tray details, and Table 6 shows the number of units per tray.

Figure 24 shows the packing method used to ship trays. Before the trays are sealed in the aluminum-lined plastic bag, they are baked in accordance with the requirements for dry-packing at the appropriate level.

Figure 23. Shipping Tray Detail

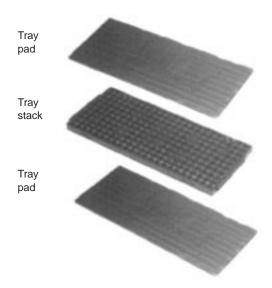


Table 6. Number of Units per Shipping Tray

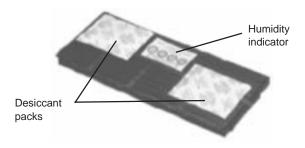
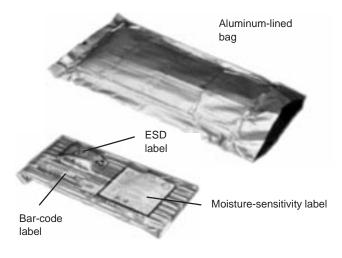

		•		•
Body Size (mm)	Package Code	Matrix	Units/ Tray	Units/ Box
16 x 16	GZY, GHK	6 x 15	90	450
15 x 15	GGW,GHC	6 x 15	90	450
13 x 13	GHG, GHJ, GHV	8 x 20	160	800
12 x 12	GZG, GGB	8 x 20	160	800
11 x 11	GGT	8 x 20	160	800
10 x 10	GGF, GHZ, GGM	8 x 25	200	1000
8 x 8	GGV, GJJ	9 x 25	225	1125
9 x 13	GFZ, GHB, GHN	10 x 18	180	900

Figure 24. Packing Method for Trays


Arrange the stack of trays to be packed with a tray pad on top and bottom

Strap the tray stack and pads together with four straps—three crosswise and one lengthwise. Then place the desiccants and the humidity indicator on top.

Place the lot inside the aluminum-lined bag and vacuum-seal it. Place the necessary labels on the sealed bag.

4. Wrap and tape bubble pack around the bag for a snug fit in the inner carton. Place the necessary labels on the inner carton.

Add bubble pack around the inner carton for a snug fit in the skidboard liner.

6. Place four foam corner spacers on the folded skidboard liner before placing it in the outer carton. An enhanced skidboard liner, which eliminates the need for foam corner spacers, may be used. Seal outer carton and apply necessary labels.

Tape-and-Reel Packing Method

The embossed tape-and-reel method is generally preferred by automatic pick-and-place machines. This will be the standard way MicroStar BGA packages will be shipped. Trays will remain an option for those customers who prefer them. The tape is made from an antistatic/conductive material. The cover tape, which peels back during use, is heat-sealed to the carrier tape to keep the devices in their cavities during shipping and handling. The tape-and-reel packaging used by Texas Instruments is in full compliance with EIA Standard 481-A, "Taping of Surface-Mount Components for Automatic Placement." The static-inhibiting materials used in the carrier-tape manufacturing provides device

protection from static damage, while the rigid, dust-free polystyrene reels provide mechanical protection and clean-room compatibility with dereeling equipment currently available on most high-speed automated placement systems.

Tape Format

Typical tape format is shown in Figure 25. The variables used in Figure 25 and Table 7 are defined as follows: W is the tape width; P is the pocket pitch; A_0 is the pocket width; B_0 is the pocket length; K_0 is the pocket depth; K is the maximum tape depth; and F is the distance between the drive hole and the centerline of the pocket.

Figure 25. Single Sprocket Tape Dimensions

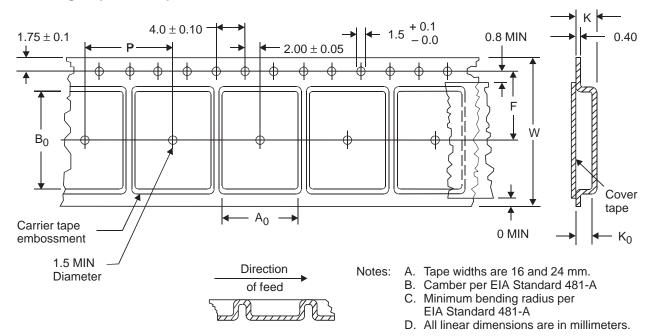


Table 7. Tape Dimensions†

Tape Width (W)	Pocket Pitch (P)	Pocket Width (A ₀)	Pocket Length (B ₀)	Pocket Depth (K ₀)	Max. Tape Depth (K)	Centerline to Drive Hole (F)	Package Size
16	12	8.2	8.2	1.7	2.0	7.5	8 x 8
24	16	10.2	10.2	1.7	2.0	11.5	10 x 10
24	16	11.35	11.35	1.9	2.2	11.5	11 x 11
24	16	12.4	12.4	1.9	2.2	11.5	12 x 12
24	20	15.25	15.25	2.2	2.5	11.5	15 x 15

[†] All dimensions are in millimeters.

Figure 26. Reel Dimensions

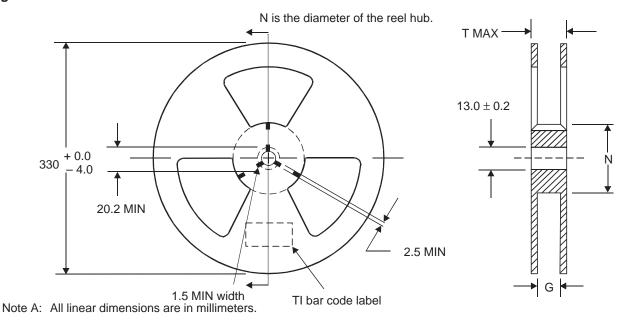
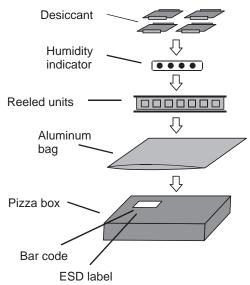


Table 8. Reel Dimensions†


Tape Width (G)	Reel Hub Diameter (N)	Reel Total Thickness (T MAX)	Parts per Reel	
16	100	28	1000	
24	100	28	1000	

[†] All dimensions are in millimeters.

The reels are shown in Figure 26. In this figure, G is the width of the tape, N is the diameter of the hub, and T is the total reel thickness.

After the parts are loaded into the reel, each individual reel is packed in its own "pizza" box for shipping, as shown in Figure 27.

Figure 27. Tape-and-Reel Packing

Device Insertion

Devices are inserted toward the outer periphery of the tape by placing the side with the device name face up and the side with the balls attached face down. The pin-1 indicator is placed in the top right-hand corner of the pocket, next to the sprocket holes.

Packaging Method

For reels, once the taping has been completed, the end of the leader is fixed onto the reel with tape. The product name, lot number, quantity, and date code are recorded on the reel and the cardboard box used for tape delivery. Each reel is separately packed in a cardboard box for delivery.

Trays are packed with five loaded trays and one empty tray on top for support and to keep packages secure. The stack is secured with stable plastic straps and sealed in a moisture-proof bag.

Customer-specific bar code labels can be added under request or general purchasing specification.

Moisture-sensitive packages are baked before packing and are packed within 8 hours of coming out of the oven. Both the tape-and-reel and the tray moisture-proof bags are sealed and marked with appropriate labeling warning that the packages inside the bags are dry-packed and giving the level of moisture sensitivity.

5 Sockets

The Design Challenge

The fine pitch of MicroStar BGA packages makes socketing a special challenge. Mechanical, thermal, and electrical issues must be accommodated by the socket designer. CSP packaging is at the cutting edge of package design and it appears that it is being adopted faster than any other previous package technology. Standards are only now beginning to be established. TI fully supports these efforts, and all MicroStar BGA outlines are being engineered to fit within JEDEC standards where they exist. For instance, all 0.8-mm-pitch packages fit within JEDEC MO205. While these standards detail the pitch and I/O placement, they do allow wide latitude for overall body size variation. The size of a specific package within the TI MicroStar BGA family is based on the package construction, and is independent of die size. Thus, a range of die sizes and I/Os within a family will have the same package dimensions. Each different family has a specific I/O pitch and array. For maximum socket versatility, an adapter or "personalizer" can be customized for each application, allowing a single-socket body to be used with many packages. This feature is especially useful in the early days as the technology is being developed and adopted and the total volume required is small.

Contacting the Ball

A number of different approaches for contacting the solder ball are shown schematically in Figure 28. The pinch style contact has been used extensively for contacting solder balls in conventional BGAs. A benefit of the pinch style is that the socket does not have to push down on the package to provide the necessary contact force to penetrate the oxide film on the solder balls. The issues in utilizing this approach for pitches below 1.27 mm involve:

- 1. Miniaturizing the contact
- 2. Developing injection-molding tooling for the pitch
- Developing cost-effective manufacturing procedures for handling and assembling the fragile contact

For pitches of 0.75 mm and above, Texas Instruments has designed a pinch contact that satisfies all of these requirements. Further information on the availability of these sockets can be obtained from your local TI Field Sales representative.

The contact is designed to grip the solder ball with a pinching action. This not only provides electrical contact to the solder ball but also helps retain the package in the socket. The contact is shown in Figure 29. The contact is stamped and formed from a 0.12-mm-thick strip of CDA 172, the high-yield-strength beryllium copper alloy. This alloy is used for spring applications that are exposed to high stresses and temperatures because of its excellent stress relaxation performance and formability.

Figure 28. Approaches for Contacting the Solder Ball

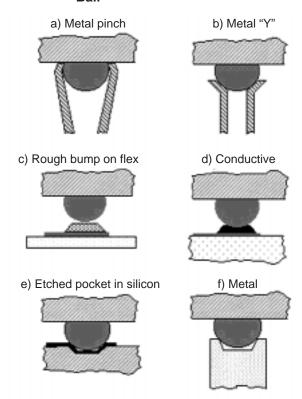
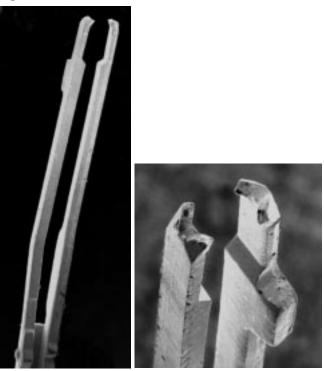



Figure 29. Pinch Contact for Solder Balls

Each contact incorporates two beams that provide an oxide-piercing interface with the sides of the balls above the central area—the equator. Since the contact is above the equator, the resultant force is downward and ensures package retention in the socket. No contact is made on

the bottom of the solder ball and the original package planarity specifications are unchanged. A photomicrograph of the contact touching the solder balls is shown in Figure 30.

Figure 30. Contact Area on Solder Ball

The witness marks left on the solder ball from the contact are shown in Figure 31. This ball was contacted at room temperature and it is clear that there was no damage to the bottom of the ball or any witness marks from the contact above the equator.

The effect of burn-in on the probe marks was examined by simulating a cycle and placing a loaded socket into an oven at 125°C for 9 hours. The result is shown in Figure 32. The penetration of the contact into the solder ball due to the higher temperature is greater but is well within the acceptable range. There was no visible pickup of solder on the contact tips. This experiment is being continued to evaluate the impact of longer times on the witness marks and the solder pickup. The location of the contact pinch is clearly seen in this photograph.

Figure 31. Witness Marks on Solder Ball

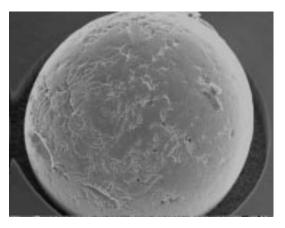
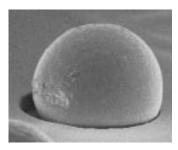



Figure 32. Effect of Burn-in on Probe Marks

Establishing Contact Force

Contact force is typically generated as a result of the deflection of the contact arm. The actual force generated is a function of the modulus of the material and the specific geometric details of the design. The solder ball diameters for CSPs tend to be small—in the range of 0.25 mm to 0.4 mm, which limits the deflection of the contact arm to a very small distance. Typically, this distance is half the ball diameter. This presents a challenge to the designer who must generate the required 15 grams of force at the contact tip, yet keep the bending stresses within the contact arms at a low enough value to achieve a 20K-cycle life. The contact force requirements are met by incorporating a pre-load, so that even for small displacements, the desired force is achieved and the socket can operate within acceptable stress levels.

The 15-gram target force is smaller than that associated with TSOP-type contact force levels, which require a 30-gram minimum. However, based on the contact tip geometry, this lower force translates to contact pressures that are high enough to achieve oxide penetration and good electrical continuity.

Conclusions and Future Work

The importance of continuing the development to 0.5-mm pitch is clear. End users want more and more electronic functionality in smaller and smaller packages. Sockets for testing these fine pitches are available today but are specialty and are considered too expensive for broad commercial application. Continued development includes innovative approaches as well as refining present methods, but at the time of the preparation of this Reference Guide, a clear-cut favorite technology had not emerged. For current progress in this and other areas of 0.5-mm-pitch technology, your local TI Field Sales representative can give you up-to-date information.

Growth rates as high as 400% for CSPs in 1998 over those in 1997 have been forecasted. The opportunity to participate in a market with this growth has provided the incentive for the socket companies to develop solutions for the infrastructure needed for burn-in test sockets. The issues of contacting the small, soft solder balls on CSPs have been solved. The price disparity between CSP sockets and TSOP sockets is to be expected during the

early days of the introduction of a new technology and is due entirely to the embryonic state of the industry and the low volume. It is believed that once this packaging technology matures and volumes increase to those of conventional burn-in sockets, then the prices for sockets for CSPs will decrease and be more in line with other commercial sockets.

6 References

K. Ano et al., "MicroStar BGAs," Application Note, TI SCJ 2328, July 1998.

Gerald Capwell, "High Density Design with MicroStar BGAs," Texas Instruments Application Note, July 1998.

James Forster, "Performance Drivers for Fine Pitch BGA Sockets," *Chip Scale Processing*, June 1998.

Kevin Lyne, "Chip Scale Packaging From Texas Instruments: MicroStar BGA," Texas Instruments Application Note, June 1997.

Gary Morrison, Les Stark, Ron Azcarte, S. Capistrano, K. Ano, K. Murata, M. Watanabe, T. Ohuchida, Y. Takahashi, Greg Ryan, "MicroStar BGA Packaging: Critical Interconnections," SEMICON '98.

Les Stark and M'hamed Idnabdeljalil, "MicroStar BGA vs. FC-CSP: Finite Element Simulation of BLR Performance: 144GGF Footprint," Texas Instruments Application Note, August 1998.

A

Frequently Asked Questions

Package Questions

Q. Do the solder balls come off during shipping?

A. No, this has never been observed. The balls are 100% inspected for coplanarity, diameter, and other physical properties prior to packing for shipment. Because solder is used during the ball-attachment process, uniformly high ball-attachment strengths are developed. Also, the ball-attachment strength is monitored frequently in the assembly process to prevent ball loss from vibration and other shipping forces.

Q. Is package repair possible? Are tools available?

A. Yes, some limited package repair is possible, and there are some semiautomatic M/C tools available. However, TI does not guarantee the reliability of repaired packages.

Q. What are the leads that appear on the package edge for? Are they connected to the inner pattern?

A. Those leads are used for plating connections during the plating of Ni/Au on the copper trace during the fabrication of the substrate. Since they do have electrical connection with the inner pattern, they can be used for test probing and signal analysis. There is no reliability risk with them.

Q. What is the composition and melting point of the solder balls?

A. The balls are a near-Sn/Pb eutectic solder that includes some additives to improve thermal fatigue life. The liquidus temperature is 178°C to 210°C.

Q. Is burn-in testing possible? How about ball damage?

A. There are commercial sockets available for 1.00-mm and 0.8-mm pitch package burn-in. Sockets for 0.5-mm pitch packages are now becoming available. Vendors include Texas Instruments, Yamaichi, Wells and Enplas. The ball damage observed falls within specified tolerances, so the testing does not affect board mount.

Q. Is tape-and-reel shipping available?

A. Tape-and-reel is the preferred method for shipping MicroStar BGA packages. Tray shipping methods are available upon customer request.

Q. What about actual market experience?

A. Since TI started production in May of 1996, well over 70 million units have been shipped. End products are primarily DSP Solutions such as wireless phones and digital camcorders where MicroStar BGA can create significant space savings. Technologies available in MicroStar BGAs include DSP, ASIC, Mixed Signal, and Linear devices.

Q. How does the packaging cost compare to QFPs?

A. CSPs are in many ways an ideal solution to cost reduction and miniaturization requirements. They offer enormous area reductions in comparison to QFPs and have increasing potential to do so without adding to system-level costs. In the best case, CSPs compete today on a cost-per-terminal basis with QFPs. For example, various CSPs from Texas Instruments are now available at cost parity with thin QFPs.

Appendix # Ouestions

Assembly Questions

Q. What alignment accuracy is possible?

A. Alignment accuracy for the 0.8-mm-pitch package is dependent upon board-level pad tolerance, placement accuracy, and solder ball position tolerance. Nominal ball position tolerances are specified at $\pm 80~\mu m$. These packages are self-aligning during solder reflow, so final alignment accuracy may be better than placement accuracy.

Q. Can the solder joints be inspected after reflow?

A. Process yields of 5-ppm (parts per million) rejects are typically seen, so no final in-line inspection is required. Some customers are achieving satisfactory results during process set-up with lamographic X-ray techniques.

Q. How do the board assembly yields of MicroStar BGAs compare to QFPs?

A. Many customers are initially concerned about assembly yields. However, once they had MicroStar BGAs in production, most of them report improved process yields compared to QFPs. This is due to the elimination of bent and misoriented leads, the wider terminal pitch than with 0.5-mm-pitch QFPs, and the ability of these packages to self-align during reflow. The collapsing solder balls also mean that the coplanarity is improved over leaded components.

Q. Are there specific recommendations for SMT processing?

A. Texas Instruments recommends alignment with the solder balls for the CSP package, although it is possible to use the package outline for alignment. Most customers have found they do not need to change their reflow profile.

Q. Can the boards be repaired?

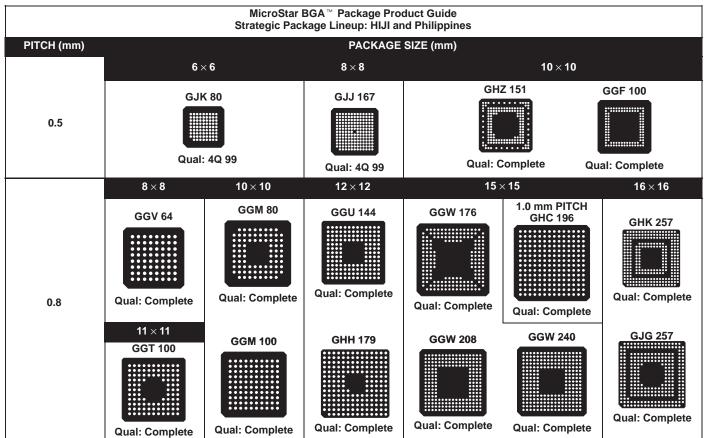
A. Yes, there are rework and repair tools and profiles available. We strongly recommend that removed packages be discarded.

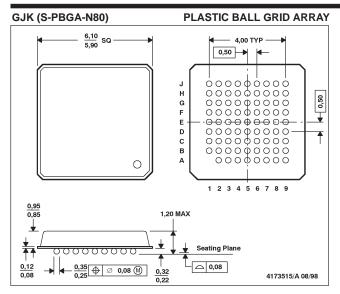
Q. Is TI developing a lead-free version of MicroStar BGAs?

A. Yes, Texas Instruments is working toward eliminating lead in the solder balls to comply with lead-free environmental policies. The lead-free solder is in final evaluation. Only the solder will change, not the package structure or the mechanical dimensions. The solder system under development is based on Sn-Ag metallurgy. Check with your local TI Field Sales representative for sample availability.

Q. What size land diameter for these packages should I design on my board?

A. Land size is the key to board-level reliability, and Texas Instruments strongly recommends following the design rules included in this bulletin.

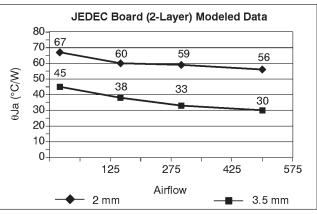

Appendix

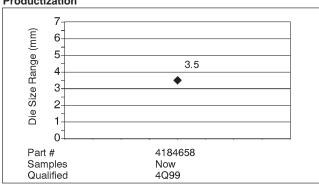

B

Package Data Sheets

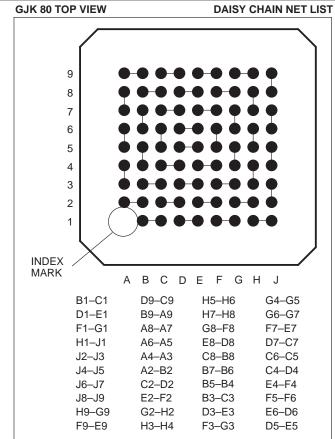
Figure 33 shows TI's strategic package lineup, followed by the package data sheets for the package families offered as standard products by Texas Instruments. As new packages are added, they will be placed on the strategic package lineup. Contact your TI field sales office for information on the most current offerings. Samples are available for all packages shown in Figure 33.

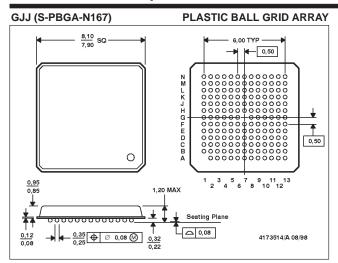
Figure 33. TI's Strategic Package Line-Up




- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. MicroStar BGA™ configuration

Electrical Characteristics IN DEVELOPMENT

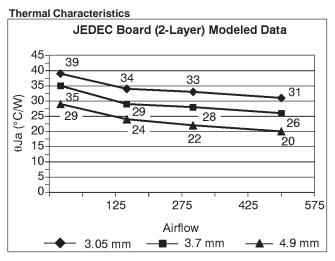

Thermal Characteristics



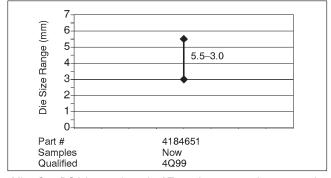
MicroStar BGA is a trademark of Texas Instruments Incorporated.

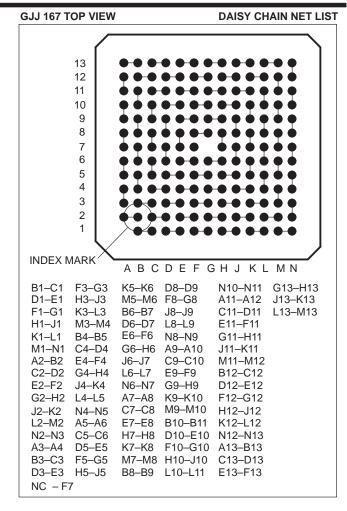
GJK 80)					PIN ASSIGNMENT NET LIST
PIN#		BALL#	PIN#		BALL#	PIN# BALL# PIN# BALL#
1	_	C2	21	—	НЗ	41 — G8 61 — B7
2	_	B1	22	_	J2	42 — H9 62 — A8
3	_	D3	23	—	G4	43 — F7 63 — C6
4	_	E4	24	—	F5	44 — E6 64 — D5
5	_	C1	25	_	J3	45 — G9 65 — A7
6	_	D2	26	—	H4	46 — F8 66 — B6
7	_	E3	27	_	G5	47 — E7 67 — C5
8	_	D1	28	_	J4	48 — F9 68 — A6
9	_	E2	29	_	H5	49 — E8 69 — B5
10	_	F4	30	_	F6	50 — D6 70 — D4
11	_	E1	31	_	J5	51 — E9 71 — A5
12	_	F3	32	_	G6	52 — D7 72 — C4
13	_	F1	33	_	J6	53 — D9 73 — A4
14	_	F2	34	—	H6	54 — D8 74 — B4
15	_	G3	35	_	G7	55 — C7 75 — C3
16	_	G1	36	_	J7	56 — C9 76 — A3
17	_	G2	37	_	H7	57 — C8 77 — B3
18	_	H2	38	_	H8	58 — B8 78 — B2
19	_	H1	39	_	J8	59 — B9 79 — A2
20	_	J1	40	_	J9	60 — A9 80 — E5

167GJJ PACKAGE OUTLINE (8 x 8 mm, 0.5 mm pitch)

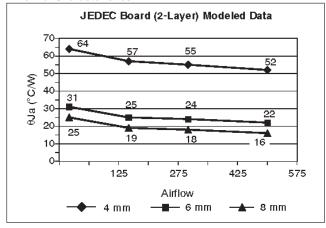


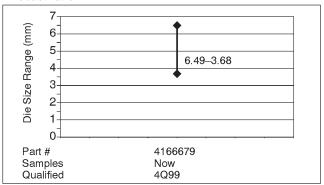
NOTES: A. All linear dimensions are in millimeters.


- B. This drawing is subject to change without notice.
- C. MicroStar BGA™ configuration

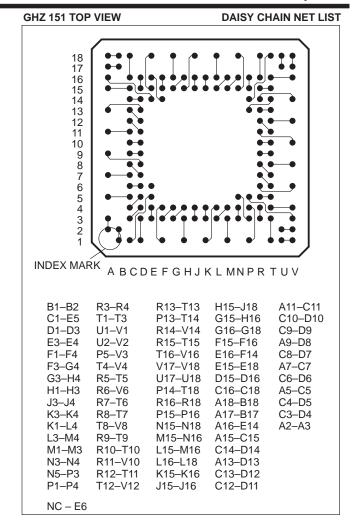

Electrical Characteristics

Productization

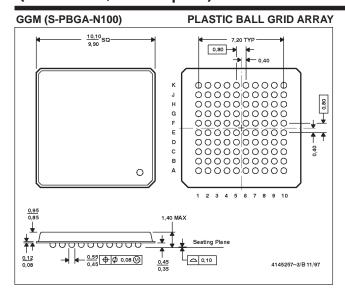

PIN# BALL#	PIN# BALL#	PIN# BALL#	PIN# BALL#	PIN# BALL#	PIN# BALL#
1 — C3 2 — D4 3 — B1 4 — C2 5 — D3 6 — E4 7 — C1 8 — D2 9 — E3 10 — D1 11 — F5 12 — E2 13 — F4 14 — E1 15 — F3 16 — F2 19 — F7 20 — G1 21 — G2 22 — G3 23 — G4 24 — H1 25 — H2 26 — G5 28 — H3	29 – J2 30 – H4 31 – K1 32 – J3 33 – K2 34 – H5 36 – J4 37 – L2 38 – M1 39 – K3 40 – J5 41 – M2 42 – N1 43 – L3 44 – K4 45 – N2 46 – M3 47 – L4 48 – K5 49 – N3 50 – M4 51 – L5 52 – N4 51 – L5 52 – N4 53 – J6 54 – M5	57 — L6 58 — M6 59 — N6 60 — H6 61 — G6 62 — N7 64 — L7 65 — K7 66 — N8 67 — M8 67 — M8 67 — M9 72 — K8 71 — M9 72 — K8 71 — M9 72 — K8 73 — N10 74 — L9 75 — M10 76 — J8 77 — N11 78 — K9 79 — M11 80 — N12 81 — L10 82 — J9 83 — M12 84 — N13	85 — L11 86 — K10 87 — M13 88 — L12 89 — K11 90 — J10 91 — L13 92 — K12 93 — J11 94 — K13 95 — H9 96 — J12 97 — H10 100 — H12 101 — H13 102 — H8 103 — H7 104 — G13 105 — G12 110 — G9 110 — G9 110 — G9 110 — G9 111 — E13 112 — F11	113 — E12 114 — F10 115 — D13 116 — E11 117 — D12 118 — F9 119 — C13 120 — E10 121 — C12 122 — B13 123 — D11 124 — E9 125 — B12 126 — A13 127 — C11 128 — D10 132 — D9 133 — A11 131 — C10 132 — D9 133 — A11 135 — C9 136 — A10 137 — E8 138 — B9 139 — D8 140 — A9	141 — C8 142 — B8 143 — A8 144 — F8 145 — G8 146 — A7 148 — C7 149 — D7 150 — A6 151 — B6 152 — E7 153 — A5 156 — D6 157 — A4 158 — C5 159 — B4 160 — E6 161 — A3 162 — D5 163 — B3 164 — A2 166 — E5 167 — B2


- B. This drawing is subject to change without notice.
- C. MicroStar BGA™ configuration

IN DEVELOPMENT


Thermal Characteristics

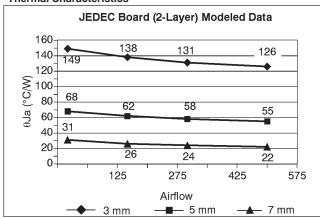
Productization



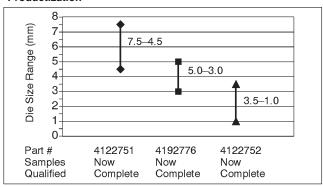
MicroStar BGA is a trademark of Texas Instruments Incorporated.

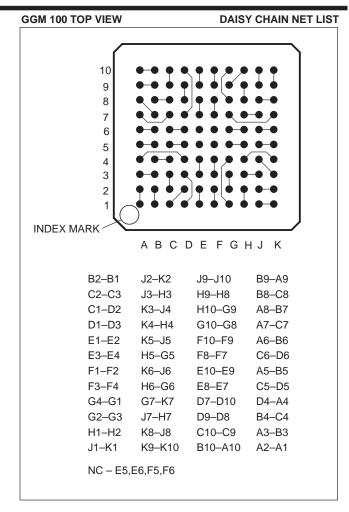
GHZ 151		P	IN ASSIGNME	ENT NET LIST
PIN# BALL#	PIN# BALL#	PIN# BALL#	PIN# BALL#	PIN# BALL#
1 — B2 2 — B1 3 — C1 4 — E5 5 — D1 6 — D3 7 — E4 8 — E3 9 — F4 110 — F1 11 — F3 12 — G4 13 — H4 15 — H1 16 — H3 17 — J4 18 — J3 19 — K4 20 — K3 21 — K4 22 — L4 23 — L4 25 — M3 26 — M4 25 — M4 25 — M3 26 — M1 27 — N4 28 — N3 30 — P3	31 — P1 32 — P4 33 — R3 33 — R3 34 — R4 35 — T3 36 — T1 37 — U1 38 — V1 39 — U2 40 — V2 41 — V3 42 — P5 43 — V4 44 — T4 45 — R5 47 — R6 48 — V6 49 — T6 50 — R7 51 — T7 52 — R8 53 — V8 55 — R9 56 — T9 57 — R10 58 — T10 58 — T10 59 — V10 60 — R11	61 — T11 62 — R12 63 — T12 64 — V12 65 — R13 66 — T13 67 — P13 68 — T14 69 — V14 70 — R14 71 — T15 72 — R15 73 — T16 75 — V17 76 — V18 77 — U17 78 — U18 80 — P14 81 — R18 82 — R16 83 — P15 84 — P16 85 — N15 86 — N15 87 — N16 88 — M15 89 — M16 89 — L15	91 — L18 92 — L16 93 — K15 94 — K16 95 — J16 97 — J18 98 — H15 99 — H16 100 — G15 101 — G16 102 — G18 103 — F15 104 — F16 105 — F14 106 — E16 107 — E18 108 — D16 110 — D15 111 — C16 112 — C18 113 — B18 114 — A18 115 — B17 116 — A17 117 — A16 118 — E14 119 — A15 120 — C15	121 — D14 122 — C14 123 — D13 124 — A13 125 — C13 126 — D12 127 — C12 128 — D11 130 — C11 131 — D10 132 — C10 133 — C9 135 — A9 136 — D8 137 — C8 138 — D7 140 — A7 141 — D6 142 — C6 143 — E6 144 — C5 145 — A5 146 — D5 147 — C4 148 — D4 150 — A3 151 — A2

100GGM PACKAGE OUTLINE (10 x 10 mm, 0.8 mm pitch)

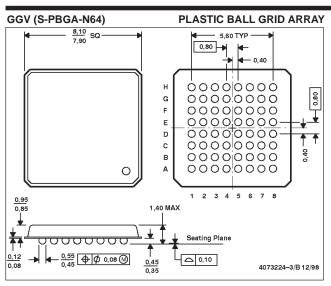


NOTES: A. All linear dimensions are in millimeters.

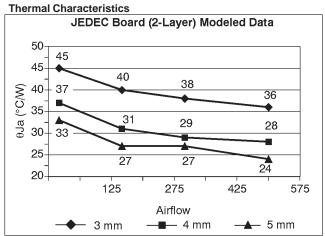

- B. This drawing is subject to change without notice.
- C. MicroStar BGA™ configuration

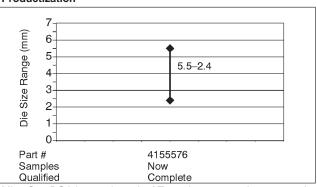

Electrical Characteristics

Thermal Characteristics


Productization

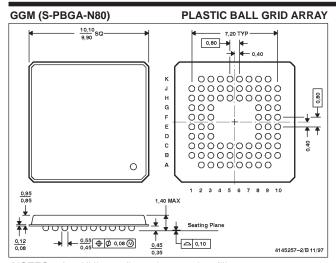
GGM 100		PIN ASSIG	NMENT NET LIST
PIN# BALL# 1 — B2 2 — B1 3 — C2 4 — C3 5 — C1 6 — D2 7 — D1	PIN# BALL# 26 — J2 27 — K2 28 — J3 29 — H3 30 — K3 31 — J4 32 — K4	PIN# BALL# 51 — J9 52 — J10 53 — H9 54 — H8 55 — H10 56 — G9 57 — G10	PIN# BALL# 76 — B9 77 — A9 78 — B8 79 — C8 80 — A8 81 — B7 82 — A7
8 — D3 9 — E1 10 — E2 11 — E3 12 — E4 13 — E5 14 — F1	33 — H4 34 — K5 35 — J5 36 — H5 37 — G5 38 — F5 39 — K6 40 — J6	58 — G8 59 — F10 60 — F9 61 — F8 62 — F7 63 — F6 64 — E10 65 — E9	83 — C7 84 — A6 85 — B6 86 — C6 87 — D6 88 — E6 89 — A5 90 — B5
15 F2 16 F F3 17 F4 18 G4 19 G1 20 G2 21 G3 22 H1 23 H2 24 J1	41 — H6 42 — G6 43 — G7 44 — K7 45 — J7 46 — H7 47 — K8 48 — J8 49 — K9	66 — E8 67 — E7 68 — D7 69 — D10 70 — D9 71 — D8 72 — C10 73 — C9 74 — B10	91 — C5 92 — D5 93 — D4 94 — A4 95 — B4 96 — C4 97 — A3 98 — B3 99 — A2


64GGV PACKAGE OUTLINE (8 x 8 mm, 0.8 mm pitch)


- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. MicroStar BGA™ configuration

Electrical Characteristics

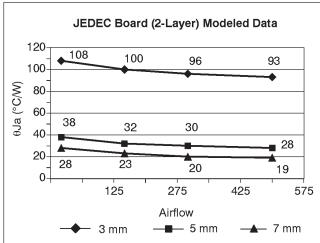
	R (Ω)	L (nH)	C (pF)	
Min.	0.071	2.002	0.273	
Mean	0.076	2.544	0.380	
Max.	0.082	3.443	0.580	


Productization

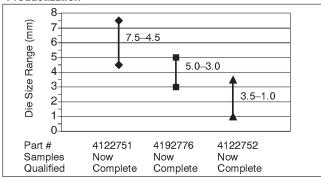
GGV 64 TOP VIEW		DAISY CHAIN NE	ET LIST
8 7 6 5 4 3 2			
INDEX MARK	A B C I A1-B1 C2-C1 D4-D3 D1-D2 E2-E1 E3-F1 F2-F3 G1-G2 H1-H2 G3-H3 E4-F4 H4-G4 G5-H5 F5-H6 G6-F6 H7-G7	H8-G8 F7-F8 E5-E6 E8-E7 D7-D8 D6-C8 C7-C6 B8-B7 A8-A7 B6-A6 D5-C5 A5-B5 B4-A4 C4-A3 B3-C3 A2-B2	

GGV 64		PIN ASSIG	NMENT NET LIST
PIN# BALL#	PIN# BALL#	PIN#BALL#	PIN#BALL#
7 – D1 8 – D2 9 – E2 10 – E1 11 – E3 12 – F1 13 – F2	26 – H5 27 – F5 28 – H6 29 – G6 30 – F6 31 – H7	35 - F7 36 - F8 37 - E5 38 - E6 39 - E8 40 - E7 41 - D7 42 - D8 43 - D6 44 - C8 45 - C7	51 - B6 52 - A6 53 - D5 54 - C5 55 - A5 56 - B5 57 - B4 58 - A4 59 - C4 60 - A3 61 - B3 62 - C3 63 - A2

80GGM PACKAGE OUTLINE (10 x 10 mm, 0.8 mm pitch)


NOTES: A. All linear dimensions are in millimeters.

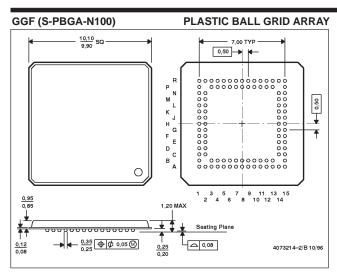
- B. This drawing is subject to change without notice.
- C. MicroStar BGA™ configuration


Electrical Characteristics

	R (Ω)	L (nH)	C (pF)	
Min.	0.054	1.487	0.215	
Mean	0.062	1.920	0.315	
Max.	0.074	2.659	0.428	
	Mean	Min. 0.054 Mean 0.062	Min. 0.054 1.487 Mean 0.062 1.920	Min. 0.054 1.487 0.215 Mean 0.062 1.920 0.315

Thermal Characteristics

Productization

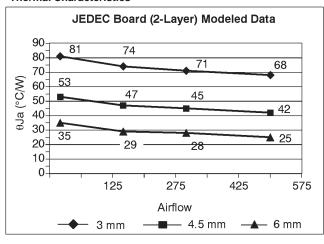


MicroStar BGA is a trademark of Texas Instruments Incorporated.

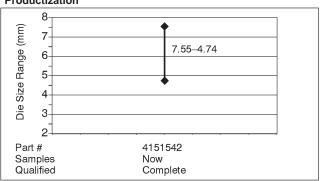
DAISY CHAIN NET LIST **GGM 80 TOP VIEW** 10 9 8 7 6 5 4 3 2 INDEX MARK ABCDEFGHJK J2-K2 B9-A9 B2-B1 J9-J10 C2-C3 J3-H3 H9-H8 B8-C8 C1-D2 K3-J4 H10-G9 A8-B7 D1-D3 K4-H4 G10-G8 A7-C7 E1-E2 K5-J5 F10-F9 A6-B6 E3-F1 H5-K6 F8-E10 C6-A5 F2-F3 J6-H6 E9-E8 B5-C5 G1-G2 K7-J7 D10-D9 A4-B4 G3-H1 H7-K8 D8-C10 C4-A3 H2-J1 J8-K9 C9-B10 B3-A2

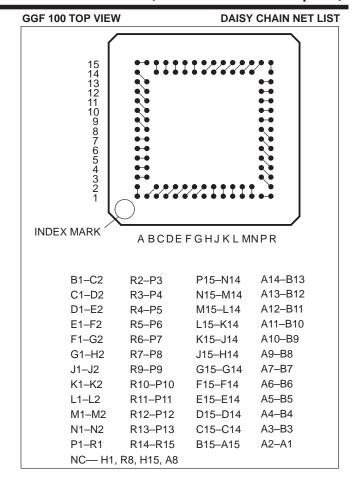
GM 80		PIN ASSIGNI	MENT NET LIS
PIN# BALL#	PIN# BALL#		PIN# BALL#
1 — B2 2 — B1	21 — J2 22 — K2	41 — J9 42 — J10	61 — B9 62 — A9
3 — C2	23 — J3	43 — H9	63 — B8
4 — C3	24 — H3	44 — H8	64 — C8
5 — C1	25 — K3	45 — H10	65 — A8
6 — D2	26 — J4	46 — G9	66 — B7
7 — D1	27 — K4	47 — G10	67 — A7
8 — D3	28 — H4	48 — G8	68 — C7
9 — E1	29 — K5	49 — F10	69 — A6
10 E2	30 — J5	50 — F9	70 — B6
11 E3	31 — H5	51 — F8	71 — C6
12 F1	32 — K6	52 — E10	72 — A5
13 F2	33 — J6	53 — E9	73 — B5
14 F3	34 — H6	54 — E8	74 — C5
15 G1	35 — K7	55 — D10	75 — A4
16 G2	36 — J7	56 — D9	76 — B4
17 G3	37 — H7	57 — D8	77 — C4
18 H1	38 — K8	58 — C10	78 — A3
19 H2	39 — J8	59 — C9	79 — B3
20- J1	40 — K9	60 — B10	80 — A2

100GGF PACKAGE OUTLINE (10 x 10 mm, 0.5 mm pitch)

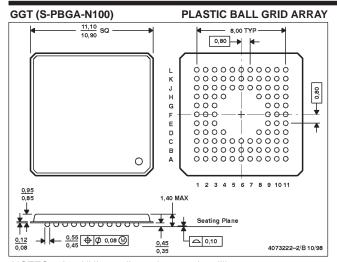


- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. MicroStar BGA™ configuration


Electrical Characteristics

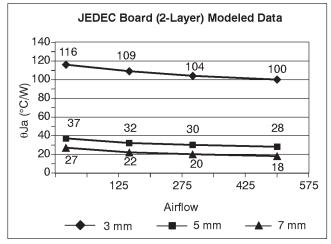

40101101100			
R (Ω)	L (nH)	C (pF)	
0.011	0.676	0.102	
0.022	1.026	0.172	
0.035	1.606	0.339	
	R (Ω) 0.011 0.022	R (Ω) L (nH) 0.011 0.676 0.022 1.026	R (Ω) L (nH) C (pF) 0.011 0.676 0.102 0.022 1.026 0.172

Thermal Characteristics

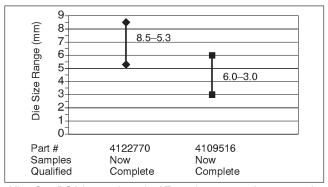

Productization

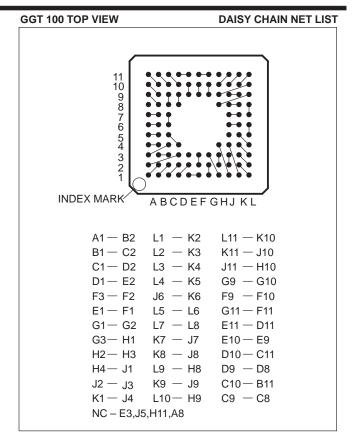
GGF 100		PIN ASSIG	SNMENT NET LIST
1 — B1 2 — C2 3 — C1 4 — D2 5 — D1 6 — E2 7 — F1 10 — G2 11 — H2 13 — H2 13 — H1 14 — J1 15 — J2 16 — K1 17 — K2 18 — L1 19 — L2 20 — M1 22 — N1 23 — N2 24 — P1	26 — R2 27 — P3 28 — R3 29 — P4 31 — P5 32 — R5 33 — P6 34 — R6 35 — P7 37 — P8 38 — R8 39 — R9 41 — R10 42 — P10 42 — P10 43 — R11 44 — P11 45 — P12 47 — R13 48 — R14	54 — M14 55 — M15 56 — L14 57 — L15 58 — K14 59 — K15 60 — J15 62 — H14 63 — H15 64 — G14 66 — F15 67 — F14 68 — E15 69 — E14 70 — D14	76 — A14 77 — B13 78 — A13 79 — B12 80 — A12 81 — B11 82 — A11 83 — B10 84 — A10 85 — B9 87 — B8 88 — A9 87 — B8 88 — A7 90 — B7 91 — A6 92 — B6 92 — B6 93 — A5 94 — B5 95 — A4 96 — B4 97 — A3 98 — B3 99 — A2

100GGT PACKAGE OUTLINE (11 x 11 mm, 0.8 mm pitch)

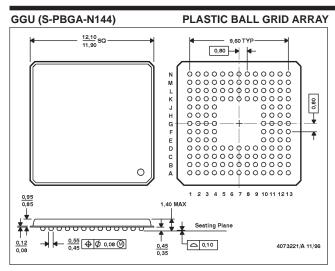

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. MicroStar BGA™ configuration


Electrical Characteristics

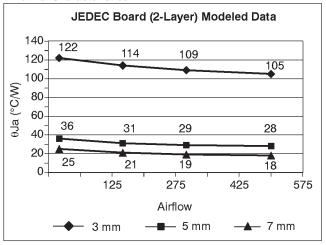

	R (Ω)	L (nH)	C (pF)	
Min. Mean	0.072 0.077	2.200 2.636	0.254 0.398	
Max.	0.086	3.633	0.582	

Thermal Characteristics

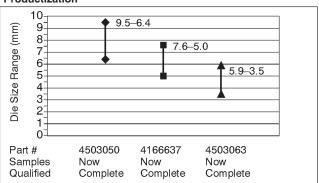

Productization

GT 100		PIN ASSIGNI	MENT NET LIS
PIN# BALL#	PIN# BALL#	PIN# BALL#	PIN# BALL#
1 — A1	26 — L1	51 — L11	76 — A11
2 — B2	27 — K2	52 — K10	77 — B10
3 — B1	28 — L2	53 — K11	78 — A10
4 — C2	29 — K3	54 — J10	79 — B9
5 — C1	30 — L3	55 — J11	80 — A9
6 — D2	31 — K4	56 — H10	81 — B8
7 — E3	32 — J5	57 — H11	82 — A8
8 — D1	33 — L4	58 — G9	83 — B7
9 — E2	34 — K5	59 — G10	84 — A7
10 — F3	35 — J6	60 — F9	85 — C7
11 — F2	36 — K6	61 — F10	86 — C6
12 — E1	37 — L5	62 — G11	87 — B6
13 — F1	38 — L6	63 — F11	88 — A6
14 G1	39 — L7	64 — E11	89 — B5
15 — G2	40 — L8	65 — D11	90 — A5
16 — G3	41 — K7	66 — E10	91 — C5
17 — H1	42 — J7	67 — E9	92 — D4
18 — H2	43 — K8	68 — D10	93 — A4
19 — H3	44 — J8	69 — C11	94 — B4
20 — H4	45 — L9	70 — D9	95 — C4
21 — J1	46 — H8	71 — D8	96 — A3
22 — J2	47 — K9	72 — C10	97 — B3
23 — J3	48 — J9	73 — B11	98 — C3
24 — K1	49 — L10	74 — C9	99 — A2
25 — J4	50 — H9	75 — C8	100 D3

144GGU PACKAGE OUTLINE (12 x 12 mm, 0.8 mm pitch)


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. MicroStar BGA™ configuration


Electrical Characteristics

	R (Ω)	L (nH)	C (pF)
Min.	0.052	1.438	0.215
Mean	0.055	1.958	0.305
Max.	0.062	3.095	0.563

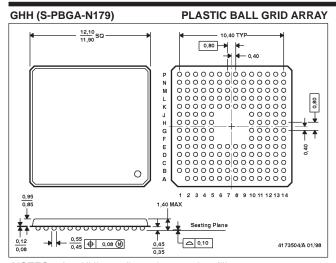
Thermal Characteristics

Productization

MicroStar BGA is a trademark of Texas Instruments Incorporated.

GGU 144 TOP VIEW DAISY CHAIN NET LIST 12 11 10 9 8 7 6 5 4 INDEX MARK ABCDEFGHJ KL MN A1-B1 N1-N2 N13-M13 A13-A12 C2-C1 M3-N3 L12-L13 B11-A11 D4-D3 K4-L4 K10-K11 D10-C10 D2-D1 M4-N4 K12-K13 B10-A10 E4-E3 K5-L5 J10-J11 D9-C9 M5-N5 J12-J13 E2-E1 B9-A9 F4-F3 K6-L6 H10-H11 D8-C8 F2-F1 M6-N6 H12-H13 B8-A8 G2-G1 M7-N7 G12-G13 B7-A7 L7-K7 G11-G10 G3-G4 C7-D7 H1-H2 F13-F12 N8-M8 A6-B6 H3-H4 L8-K8 F11-F10 C6-D6 J1-J2 N9-M9 E13-E12 A5-B5 C5-D5 J3-J4 L9-K9 E11-E10 N10-M10 D13-D12 K1-K2 A4-B4 K3-L1 L10-N11 D11-C13 C4-A3 L2-L3 M11-L11 C12-C11 B3-C3

M1-M2

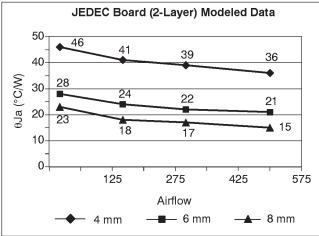

N12-M12

B13-B12

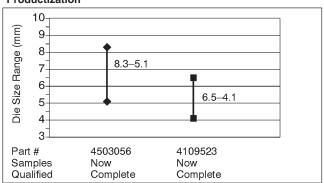
A2-B2

C	GU 144		PIN ASSIGNM	IENT NET LIST
	PIN#BALL# 1 — A1 2 — B1 3 — C2 4 — C1 5 — D4 6 — D3 7 — D2 8 — D1 9 — E4 10 — E3 11 — E2 12 — E1 13 — F2 14 — F3 15 — F2 16 — F1 17 — G3 20 — G4 21 — H1 22 — H2 23 — H3 24 — H4 25 — J1 26 — J2 27 — J3 28 — K1 30 — K2 31 — K3 32 — L1 33 — L2	PIN# BALL# 37— N1 38— N2 39— M3 40— N3 41— K4 42— L4 43— M4 44— N5 46— L5 47— M5 48— N5 49— K6 50— L6 51— M6 52— N6 51— M6 52— N8 59— L8 60— K7 55— L7 56— K7 57— N8 58— M8 59— L8 60— K8 61— N9 62— M9 63— L9 64— K9 65— N10 66— M10 67— L10 68— M11 69— M11	PIN ASSIGNN PIN# BALL# 73 — N13 74 — M13 75 — L12 76 — L13 77 — K10 78 — K10 78 — K11 79 — K12 80 — K13 81 — J10 82 — J11 83 — J12 84 — J13 85 — H10 86 — H11 87 — H12 88 — H12 88 — H13 89 — G12 90 — G13 91 — G11 92 — G10 93 — F13 94 — F12 95 — F11 96 — F10 97 — E13 98 — E12 99 — E11 100 — D12 103 — D11 104 — C13 105 — C12	

179GHH PACKAGE OUTLINE (12 x 12 mm, 0.8 mm pitch)

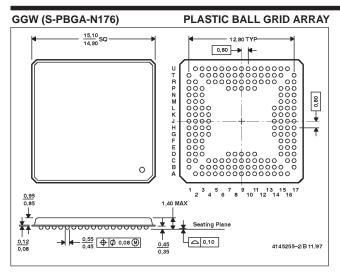

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. MicroStar BGA™ configuration


Electrical Characteristics

Thermal Characteristics

Productization

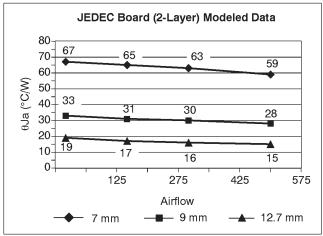


MicroStar BGA is a trademark of Texas Instruments Incorporated.

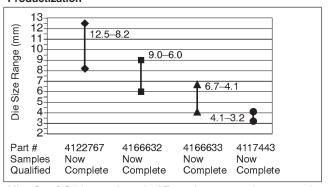
GHH 179 TOP VIEW DAISY CHAIN NET LIST 13 12 11 10 9 INDEX MARK A B C D E F G H J K L M N P B2-B1 H3-H1 N2-P2 M8-P8 N13-N14 G12-G14 B13-A13 C7-A7 C3-C2 H2-H4 N8-L8 M3-N3 M12-M13 G13-G11 C12-B12 B7-D7 M14-I 11 G10-F14 A12-D11 E7-A6 D3-D2 J2-J3 N9-M9 D1-F4 J4-K1 L9-P10 P4-I 5 L14-K11 F11-E14 A11-D10 D6-A5 K2-K3 N10-M10 K12-K13 E13-E12 C10-B10 B5-C5 E3-E2 M5-N5 E1-F4 J5-L1 P5-L6 K9-P11 K14-J11 F10-D14 A10-D9 E6-A4 F3-F2 L2-L3 M6-N6 N11-M11 J12-J13 D13-D12 C9-B9 B4-C4 K4-M1 P6-K6 L10-P12 J14-J10 E11-C14 A9-E9 D5-A3 G5-G2 M2-K5 K7-N7 N12-K10 H10-H13 C13-E10 E8-B8 B3-E5 G1-G3 N1-P1 P7-M7 P13-P14 H14-H12 B14-A14 A8-C8 F6-A2 NC --- D8,G4,H11,L7,A2

GHH 179 PIN ASSIGNMENT NET LIST

'IN# BALL#	# PIN# BALL#	PIN# BALL#	PIN# BALL#	PIN# BALL	# PIN# BALL#
1 - B2	31- J3	61- N6	91 - N13	121 F12	151- B9
2 — B1	32 — J4	62 - P6	92 — N14	122 - F11	152 — A9
3 – C3	33 – K1	63 – K6	93 — M12	123 – E14	153 — E9
4 - C2	34-K2	64 – K7	94 — M13	124 - E13	154 — E8
5 - C1	35 – K3	65 - N7	95 — M14	125 - E12	155 — B8
6 - D4	36 – J5	66 – P7	96 — L11	126 - F10	156- A8
7 – D3	37 — L1	67 — M7	97 – L12	127 – D14	157- C8
8 – D2	38 - L2	68 – L7	98 – L13	128 - D13	158 - D8
9 — D1	39 — L3	69 — M8	99 – L14	129 - D12	159 C7
10 - E4	40 – K4	70 – P8	100 K11	130 - E11	160 - A7
11 — E3	41 M1	71 – N8	101 K12	131 - C14	161- B7
12 – E2	42 - M2	72 – L8	102 K13	132 - C13	162- D7
13 - E1	43 – K5	73 – K8	103 K14	133 - E10	163 - E7
14 - F4	44 N1	74 - P9	104 J11	134 - B14	164 - A6
15 – F3	45 - P1	75 – N9	105 — J12	135 - A14	165 - B6
16 – F2	46 – N2	76 – M9	106 J13	136 — B13	166 - C6
17 - F1	47 – P2	77 — L9	107 — J14	137 - A13	167 — D6
18 – F5	48 - M3	78 – P10	108- J10	138 - C12	168- A5
19 – G5	49 – N3	79 – N10	109 H10	139 – B12	169- B5
20 – G2	50 - P3	80 — M10	110 H13	140 — A12	170- C5
21 – G1	51 — L4	81 – K9	111 – H14	141 — D11	171 — E6
22 – G3	52 – M4	82 – P11	112 H12	142 - C11	172 — A4
23 - G4	53 – N4	83 — N11	113 H11	143 - B11	173 - B4
24 - H3	54 – P4	84 – M11	114 G12	144 - A11	174 - C4
25 - H1	55 - L5	85 - L10	115 G14	145 - D10	175 D5
26 – H2	56 - M5	86 – P12	116 G13	146 — C10	176 - A3
27 — H4	57 – N5	87 – N12	117 G11	147 - B10	177 — B3
28 — H5	58 - P5	88 — K10	118 — G10	148 - A10	178 — E5
29 — J1	59 – L6	89 - P13	119 — F14	149- D9	(179- F6 (ID ba
30 - J2	60-M6	90 - P14	120- F13	150- C9	180- A2

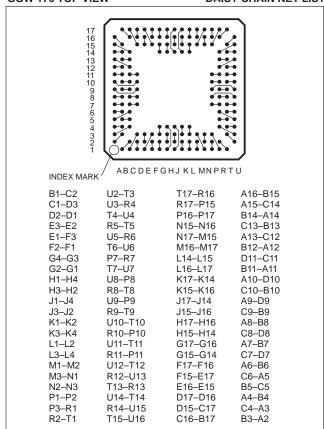


- NOTES: A. All linear dimensions are in millimeters.
 - This drawing is subject to change without notice.
 - C. MicroStar BGA™ configuration


Electrical Characteristics

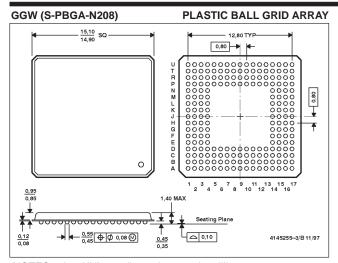
		R (Ω)	L (nH)	C (pF)	
	Min.	0.075	1.595	0.204	
	Mean	0.083	2.417	0.298	
	Max.	0.099	3.284	0.425	
1					

Thermal Characteristics



Productization

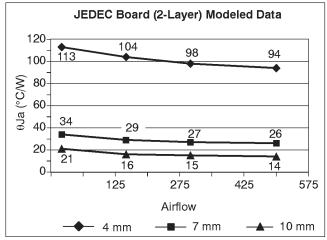
MicroStar BGA is a trademark of Texas Instruments Incorporated.


GGW 176 TOP VIEW DAISY CHAIN NET LIST

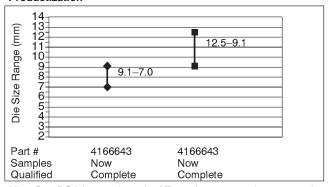
GGW 176 PIN ASSIGNMENT NET LIST

```
PIN#BALL# PIN#BALL# PIN# BALL#
                                         PIN# BALL# PIN# BALL#
  1 - B1
2 - C2
                          71 - P10
                                         106 - K14
107 - K15
                                                       141 - A13
142 - C12
             36 - N1
             37 - N2
                           72 - R10
  3 - C1
              38 - N3
                           73
                              - U11
                                         108 - K16
                                                        143 – B12
       D3
              39 - P1
                           74 - T11
                                         109
                                              - J17
                                                        144 – A12
  5 - D2
6 - D1
             40 - P2
41 - P3
                          75 - R11
76 - P11
                                         110 - J14
                                                        145 - D11
                                         111 - J15
                                                        146 - C11
                          77
                                         112 - J16
                                                        147 - B11
       E3
              42 - R1
                              - U12
                                         113 - H17
                              - T12
                                                        148 - A11
  9 -
       E1
              44 - T1
                          79 - R12
                                         114 - H16
                                                        149 - A10
                                         115 - H14
                          80 - U13
81 - T13
                                                       150 - D10
151 - C10
  10- F3
11- F2
             45 - U2
46 - T3
                                         116 - H15
       F1
                                         117 - G17
  12-
              47 –
                  U3
                          82
                               - R13
                                                        152 - B10
                                                        153 - A9
  13- G4
              48 - R4
                           83
                              - U14
                                         118 - G16
                              - T14
  14- G3
              49 - T4
                          84
                                         119 - G15
                                                        154 - D9
             50 - U4
51 - R5
                                         120 - G14
121 - F17
  15- G2
16- G1
                              - R14
                                                        155 -
                                                              C9
B9
                          85
                          86
                              - U15
                                                        156
                              - T15
                   T5
                                              - F16
  17- H1
                          87
                                         122
                                                        157 -
                                                               Α8
  18- H4
                          88 - U16
                                         123 - F15
                          89 - T17
                                         124 - E17
  19- H3
             54 - R6
                                                        159 -
                                                              D8
 20- H2
21- J1
                          90 - R16
                                         125 - E16
                                                        160 -
                                                              C8
A7
             55 - T6
              56 - U6
                          91
                              - R17
                                              - E15
                                                        161 –
                                         126
              57 - P7
                              - P15
                                         127 - D17
                                                              B7
                          93 - P16
94 - P17
  23- J3
             58 - R7
                                         128 - D16
                                                        163 - C7
      J2
K1
K2
             59 - T7
                                         129 - D15
 24-
25-
                                                        164 -
                                                              D7
                              - N15
                                         130 - C17
131 - C16
             60 - U7
                          95
                                                        165 -
                                                              A6
  26
             61
                          96
                                N16
                                                        166
             62 - P8
                          97
                              - N17
                                         132 - B17
                                                       168 - A5
169 - B5
  28- K3
             63 - R8
                          98 - M15
                                         133 - A16
                                         134 – B15
 29- L1
30- L2
             64 - T8
                          99 - M16
                                                              C5
A4
             65 - U9
                          100 - M17
                                         135 - A15
136 - C14
                                                        170 -
             66 - P9
                          101
                              - L14
                                                        171 -
  32- L4
             67 - R9
                          102 - L15
                                         137 - B14
                                                        172 - B4
             68 - T9
  33- M1
                          103 - L16
                                         138 - A14
139 - C13
                                                        173 -
                                                              C4
A3
             69 - U10
                          104 - L17
  34- M2
                                                        174 -
  35- M3
              70 - T10
                          105 - K17
                                         140
                                              - B13
                                                        175 -
                                                              В3
```

208GGW PACKAGE OUTLINE (15 x 15 mm, 0.8 mm pitch)


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. MicroStar BGA™ configuration


Electrical Characteristics

	R (Ω)	L (nH)	C (pF)	
Min.	0.070	1.824	0.217	
Mean	0.075	2.266	0.278	
Max.	0.079	3.416	0.433	

Thermal Characteristics

Productization

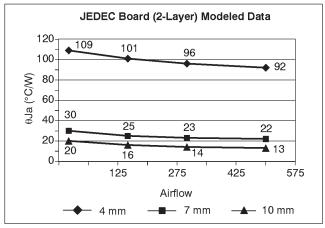
MicroStar BGA is a trademark of Texas Instruments Incorporated.

DAISY CHAIN NET LIST **GGW 208 TOP VIEW** 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 INDEX MARK A B C D E F G H J K L M N P R T U J1-K4 T2-T3 U9-P10 T16-R16 J17-H14 B16-B15 B1-C1 U2-U3 T17-R17 H15-H16 A16-A15 C8-B8 K3-K2 R10-T10 D3-D2 K1-L4 R4-T4 A8-D7 L3-L2 U4-P5 E3-E2 L1-M4 R5-T5 U11-P12 C13-B13 A7-D6 E1-F4 M3-M2 U5-P6 A13-D12 C6-B6 F3-F2 M1-N4 R6-T6 M15-M16 F17-E14 C12-B12 A6-D5 F1-G4 N3-N2 U6-P7 G3-G2 N1-P4 R7-T7 C11-B11 A5-D4 U7-P8 G1-H4 P1-P3 U14-R14 L17-K14 D17-D15 A11-D10 A4-C4 H3-H2 P2-R1 R8-T8 D16-C17 C10-B10 B4-A3 U8-P9 B3-A2 R15-U17 J15-J16 .13-.12 R3-U1 R9-T9 C15-A17 C9-B9 C3-A1

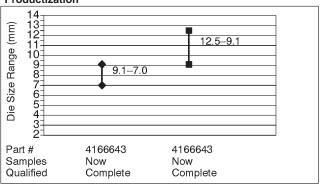
GGW 208 PIN ASSIGNMENT NET LIST

PIN# BALL#	PIN# BALL#	PIN# BALL#	PIN# BALL#	PIN# BALL#	PIN# BALL#	PIN# BALL#	PIN#BALL#
1 — B2	27 - J1	53 — T2	79 — U9	105 — T16	131- J17	157 - B16	183-A9
2 - C2	28 - K4	54 - T3	80 — P10	106 - R16	132- H14	158 - B15	184-D8
3 — B1	29 — K3	55 — U2	81 —R10	107 — T17	133- H15	159 - A16	185-C8
4 — C1	30 - K2	56 — U3	82 — T10	108 — R17	134 H16	160 - A15	186-B8
5 — D3	31 — K1	57 — R4	83 -U10	109 — P15	135- H17	161 - C14	187-A8
6 — D2	32 - L4	58 — T4	84 — P11	110 — P16	136- G14	162 - B14	188-D7
7 — D1	33 — L3	59 — U4	85 — R11	111 — P17	137- G15	163 - A14	189-C7
8 — E4	34 - L2	60 - P5	86 — T11	112 — N14	138- G16	164 - D13	190-B7
9 — E3	35 — L1	61 — R5	87 — U11	113 — N15	139- G17	165 - C13	191 – A7
10 — E2	36 — M4	62 — T5	88 — P12	114 — N16	140- F14	166 - B13	192-D6
11 — E1	37 — M3	63 — U5	89 -R12	115 — N17	141- F15	167 - A13	193-C6
12 — F4	38 — M2	64 - P6	90 — T12	116 — M14	142- F16	168 - D12	194-B6
13 — F3	39 — M1	65 — R6	91 —U12	117 — M15	143- F17	169 - C12	195-A6
14 — F2	40 - N4	66 - T6	92 — P13	118 — M16	144- E14	170 - B12	196-D5
15 — F1	41 — N3	67 — U6	93 —R13	119 — M17	145- E15	171 - A12	197-C5
16 — G4	42 - N2	68 — P7	94 — T13	120 — L14	146- E16	172 - D11	198-B5
17 — G3	43 — N1	69 — R7	95 — U13	121 - L15	147- E17	173 - C11	199-A5
18 — G2	44 — P4	70 — T7	96 — P14	122 - L16	148- D14	174 - B11	200-D4
19 — G1	45 — P1	71 — U7	97 —U14	123 - L17	149 [—] D17	175 - A11	201 – A4
20 — H4	46 — P3	72 — P8	98 —R14	124 - K14	150 D15	176 - D10	202-C4
21 — H3	47 — P2	73 — R8	99 — T14	125 — K15	151- D16	177 - C10	203-B4
22 — H2	48 — R1	74 — T8	100 – U15	126 - K16	152 C17	178 - B10	204-A3
23 — H1	49 — R2	75 — U8	101 — T15	127 - K17	153- C16	179 - A10	205-B3
24 — J4	50 - T1	76 — P9	102 - U16	128 — J14	154- B17	180 - D9	206-A2
25 — J3	51 — R3	77 — R9	103 - R15	129 — J15	155- C15	181 - C9	207-C3
26 — J2	52 — U1	78 — T9	104 — U17	130 - J16	156- A17	182 - B9	208-A1

DAISY CHAIN NET LIST


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. MicroStar BGA™ configuration


Electrical Characteristics

Thermal Characteristics

Productization

MicroStar BGA is a trademark of Texas Instruments Incorporated.

INDEX MARK B2-C2 J2-J1 T2-T3 T9-U9 T16-R16 J16-J17 B16-B15 B9-A9 B1-C1 K5-K4 U2-U3 N10-P10 T17-R17 H13-H14 A16-A15 E8-D8 D3-D2 K3-K2 P15-P16 D1-E5 K1-L5 E4-E3 L4-L3 G14-G15 D13-C13 B13-A13 E2-E1 L2-L1 N16-N17 G16-G17 M5-M4 N6-P6 M13-M14 F13-F14 F3-F2 M3-M2 R12-T12 M15-M16 F15-F16 C12-B12 C6-B6

GGW 240 TOP VIEW

F1-G5

G4-G3

G2-G1

H5-H4

H3-H2

H1-J5

J4-J3

M1-N4

N3-N2

N1-P4

P1-P3

P2-R1

R2-T1

R3-U1

U6-N7

R8-T8

U8-N9

P9-R9

U12-P13

R13-T13

U13-P14

U14-R14

T14-U15

T15-U16

GGW 240 PIN ASSIGNMENT NET LIST

R15-U17 J14-J15

M17-L13 F17-E14

K13-K14 D17-D15

K15-K16 D16-C17

K17-J13 C16-B17

E15-E16

E17-D14

C15-A17

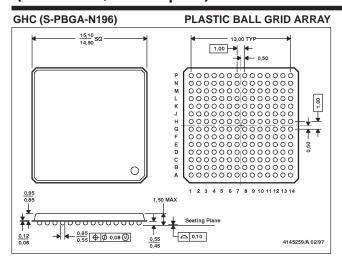
D11-C11

B11-A11

A10-E9

D9-C9

E10-D10 A4-C4

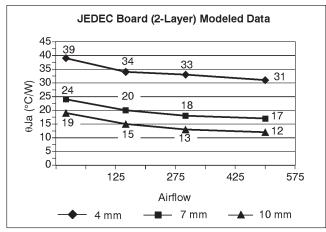

C10-B10 B4-A3

B3-A2

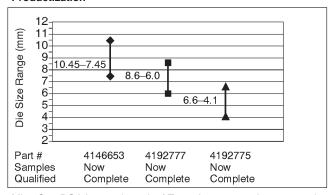
C3-A1

1 - B2 2 - C2 3 - B1 4 - C1	31 - J2 32 - J1 33 - K5 34 - K4	61 – T2 62 – T3 63 – U2	91 - T9 92 - U9	121— T16	PIN# BALL# 151 — J16	181— B16	211 — B9
2 - C2 3 - B1 4 - C1	32 — J1 33 — K5	62 - T3			151 — J16	181- B16	211 — B9
3 - B1 4 - C1	33 — K5		92 - U9				
4 - C1		63 - 112		122-R16	152 — J17	182- B15	212 - A9
	31 - K1	00 - 02	93 — N10	123— T17	153 — H13	183— A16	213 – E8
	34 - 14	64 – U3	94 - P10	124-R17	154 — H14	184— A15	214 — D8
5 — D3	35 – K3	65 - R4	95 - R10	125- P15	155 – H15	185- C14	215 - C8
6 - D2	36 – K2	66 - T4	96 - T10	126- P16	156 – H16	186- B14	216 - B8
7 — D1	37 — K1	67 – U4	97 — U10	127- P17	157 — H17	187- A14	217 - A8
8 — E5	38 — L5	68 - N5	98 - N11	128-N13	158 — G13	188- E13	218 - E7
9 – E4	39 — L4	69 - P5	99 - P11	129-N14	159 — G14	189- D13	219 - D7
10 - E3	40 - L3	70 — R5	100 - R11	130-N15	160 - G15	190- C13	220 - C7
11 — E2	41 — L2	71 — T5	101 — T11	131-N16	161 — G16	191- B13	221 — B7
12 - E1	42 — L1	72 – U5	102 - U11	132-N17	162 - G17	192- A13	222 - A7
13 – F5	43 - M5	73 - N6	103 - N12	133-M13	163 - F13	193- E12	223 - E6
14 – F4	44 - M4	74 — P6	104 - P12	134-M14	164 — F14	194- D12	224 - D6
15 – F3	45 — M3	75 — R6	105 — R12	135-M15	165 — F15	195- C12	225 - C6
16- F2	46 - M2	76 – T6	106 - T12	136-M16	166 - F16	196- B12	226 - B6
17 – F1	47 — M1	77 – U6	107 — U12	137-M17	167 – F17	197- A12	227 - A6
18 – G5	48 — N4	78 – N7	108 — P13	138- L13	168 — E14	198- E11	228 - D5
19 - G4	49 - N3	79 — P7	109 - R13	139- L14	169 — E15	199- D11	229 - C5
20 - G3	50 - N2	80 - R7	110 — T13	140- L15	170 — E16	200- C11	230 - B5
21 — G2	51 — N1	81 — T7	111 — U13	141- L16	171 — E17	201- B11	231 — A5
22 - G1	52 — P4	82 - U7	112 — P14	142- L17	172 - D14	202- A11	232 - D4
23 - H5	53 — P1	83 – N8	113 — U14	143- K13	173 – D17	203- E10	233 - A4
24 - H4	54 — P3	84 — P8	114 — R14	144- K14	174 — D15	204- D10	234 - C4
25 - H3	55 — P2	85 - R8	115 — T14	145- K15	175 — D16	205- C10	235 - B4
26 - H2	56 — R1	86 — T8	116 — U15	146- K16	176 - C17	206- B10	236 - A3
27 - H1	57 — R2	87 – U8	117 — T15	147- K17	177 - C16	207- A10	237 - B3
28 - J5	58 — T1	88 - N9	118 — U16	148 J13	178 — B17	208- E9	238 - A2
29 - J4	59 — R3	89 — P9	119 — R15	149 J14	179 — C15	209- D9	239 - C3
30 - J3	60 — U1	90 - R9	120 - U17	150- J15	180 — A17	210- C9	240 - A1
	7 - D1 8 - E5 9 - E4 10 - E3 11 - E2 12 - E1 13 - F5 14 - F4 15 - F3 16 - F2 17 - F1 18 - G5 19 - G4 20 - G3 21 - G2 22 - G1 23 - H5 24 - H4 25 - H3 26 - H2 27 - H1 28 - H2	7 - D1 37 - K1 8 - E5 38 - L5 9 - E4 39 - L4 10 - E3 40 - L3 11 - E2 41 - L2 12 - E1 42 - L1 13 - F5 43 - M5 14 - F4 44 - M4 15 - F3 45 - M2 17 - F1 47 - M1 18 - G5 48 - N4 19 - G4 49 - N3 20 - G3 50 - N2 21 - G2 51 - N1 22 - G1 52 - P4 23 - H5 53 - P1 24 - H4 54 - P2 26 - H2 56 - R1 27 - H1 57 - R2 28 - J5 58 - T1 29 - J4 59 - R3	7 - D1 37 - K1 67 - U4 8 - E5 38 - L5 68 - N5 9 - E4 39 - L4 69 - P5 10 - E3 40 - L3 70 - R5 11 - E2 41 - L2 71 - T5 12 - E1 42 - L1 72 - U5 13 - F5 43 - M5 73 - N6 14 - F4 44 - M4 74 - P6 15 - F3 45 - M5 75 - R6 16 - F2 46 - M2 76 - T6 17 - F1 47 - M1 77 - U6 18 - G5 48 - N4 78 - N7 19 - G4 49 - N3 79 - P7 20 - G3 50 - N2 80 - R7 21 - G2 51 - N1 81 - T7 22 - G1 52 - P4 82 - U7 23 - H5 53 - P1 83 - N8 24 - H4 54 - P3 84 - P8 25 - H3 55 - P2 85 - R8 26 - H2 56 - R1 86 - T8 27 - H1 57 - R2 87 - U8 28 - J5 58 - T1 88 - N9 29 - J4 59 - R3 89 - P9	7 - D1 37 - K1 67 - U4 97 - U10 8 - E5 38 - L5 68 - N5 98 - N11 9 - E4 39 - L4 69 - P5 99 - P11 10 - E3 40 - L3 70 - R5 100 - R11 11 - E2 41 - L2 71 - T5 101 - T11 12 - E1 42 - L1 72 - U5 102 - U11 13 - F5 43 - M5 73 - N6 103 - N12 14 - F4 44 - M4 74 - P6 104 - P12 15 - F3 45 - M3 75 - R6 105 - R12 16 - F2 46 - M2 76 - T6 106 - T12 17 - F1 47 - M1 77 - U6 107 - U12 18 - G5 48 - N4 78 - N7 108 - P13 19 - G4 49 - N3 79 - P7 109 - R13 20 - G3 50 - N2 80 - R7 110 - T13 21 - G2 51 - N1 81 - T7 111 - U13 22 - G1 52 - P4 82 - U7 112 - P14 23 - H5 53 - P1 83 - N8 113 - U14	7 - D1 37 - K1 67 - U4 97 - U10 127 - P17 8 - E5 38 - L5 68 - N5 98 - N11 128 - N13 9 - E4 39 - L4 69 - P5 99 - P11 129 - N14 10 - E3 40 - L3 70 - R5 100 - R11 130 - N15 11 - E2 41 - L2 71 - T5 101 - T11 131 - N16 12 - E1 42 - L1 72 - U5 102 - U11 132 - N17 13 - F5 43 - M5 73 - N6 103 - N12 133 - M13 14 - F4 44 - M4 74 - P6 104 - P12 135 - M15 15 - F3 45 - M3 75 - R6 105 - R12 136 - M16 17 - F1 47 - M1 77 - U6 107 - U12 137 - M1 18 - G5 48 - N4 78 - N7 108 - P13 138 - L13 19 - G4 49 - N3 79 - P7 109 - R13 139 - L14 20 - G3 50 - N2 80 - R7 110 - T13 140 - L15 21 - G2 51 - N1 81 - T7 111 - U13 141	7 - D1 37 - K1 67 - U4 97 - U10 127 - P17 157 - H17 8 - E5 38 - L5 68 - N5 98 - N11 128 - N13 158 - G13 9 - E4 39 - L4 69 - P5 99 - P11 129 - N14 159 - G14 10 - E3 40 - L3 70 - R5 100 - R11 130 - N15 160 - G15 11 - E2 41 - L2 71 - T5 101 - T11 131 - N16 161 - G16 12 - E1 42 - L1 72 - U5 102 - U11 132 - N17 162 - G17 13 - F5 43 - M5 73 - N6 103 - N12 133 - M13 163 - F13 14 - F4 44 - M4 74 - P6 104 - P12 134 - M14 164 - F16 15 - F3 45 - M3 75 - R6 105 - R12 136 - M16 166 - F16 16 - F2 46 - M2 76 - T6 106 - T12 136 - M16 166 - F16 17 - F1 47 - M1 77 - U6 107 - U12 137 - M17 167 - F17 18 - G3 50 - N2 80 - R7 110 - T13 13	7 - D1 37 - K1 67 - U4 97 - U10 127 - P17 157 - H17 187 - A14 8 - E5 38 - L5 68 - N5 98 - N11 128 - N13 158 - G13 188 - E13 9 - E4 39 - L4 69 - P5 99 - P11 129 - N14 159 - G14 189 - D13 10 - E3 40 - L3 70 - R5 100 - R11 130 - N15 160 - G15 190 - C13 11 - E2 41 - L2 71 - T5 101 - T11 131 - N16 161 - G16 191 - B13 12 - E1 42 - L1 72 - U5 102 - U11 132 - N17 162 - G17 192 - A13 13 - F5 43 - M5 73 - N6 103 - N12 133 - M13 163 - F13 193 - E12 14 - F4 44 - M4 74 - P6 104 - P12 134 - M14 164 - F14 194 - D12 15 - F3 45 - M3 75 - R6 105 - R12 135 - M15 165 - F15 195 - C12 15 - F2 46 - M2 76 - T6 106 - T12 137 - M17 167 - F17 197 - A12 18 - G3 </th

196GHC PACKAGE OUTLINE (15 x 15 mm, 1.0 mm pitch)



- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. MicroStar BGA™ configuration


Electrical Characteristics

	R (Ω)	L (nH)	C (pF)	
Min.	0.078	2.174	0.256	
Mean	0.092	3.288	0.470	
Max.	0.123	6.418	1.071	

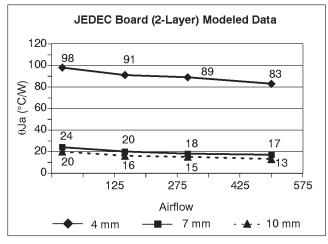
Thermal Characteristics

Productization

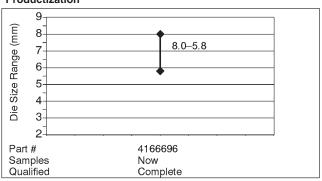
MicroStar BGA is a trademark of Texas Instruments Incorporated.

GHC 196 TOP VIEW DAISY CHAIN NET LIST 14 13 12 11 10 9 8 6 5 3 2 INDEX MARK D F Е G H N10_ P11 J10 _ H11 C13_ C12 A7 _ B7 D3 J3_ K5 M6 D1 K4_ K3 N6_ P6 M11_ N11 H12_ H10 A14_ B11 D6_ A6 E2_ E1 K1_ K2 L6_ K6 P13_ N12 G12_ G14 A13_ C11 B6_ C6 E3 E4 L1 L4 L7_ N7 M12_ N13 G13_ G11 A12_ A11 E6_ D5 M1_ L3 P7_ M7 M13_ P14 G10_ F11 B10_ A10 C5_ A5 L2_ N1 L13 _ N14 F14 _ F13 C10 _ D10 B5 _ A4 K7_ M8 G4 M2_ M3 P8_ N8 L12 _ M14 F12 _ F10 E10 _ C9 D4_ A3 L14 _ K13 N2_ N3 L8_ K8 E11 _ E12 B9 _ A9 K14_ K12 E14_ E13 D9 _ E9 G3_ G5 P1_ N4 L9_ P9 A2 _ B3 P2_ M4 N9_ M9 K11 _ K10 D14 _ D11 D8 _ B8 Internal connection - E5,F6,F7,F8,F9,G6,G7,G8,G9,H6,H7,H8,H9,J6,J7,J8,J9

GHC 196 PIN ASSIGNMENT NET LIST PIN# BALL# 105- J14 131 -106- J11 132 - B14 3 -29 - J1 55 - M5 81 - N10 107- J10 133 - C13 159- A7 82 - P11 30 - J2 56 - L5 108- H11 134 - C12 31 - J3 57 - K5 83 - L11 109- H13 135 - B13 161- D7 6 -D3 32 - .1558 - M6 84 - P12 110 - H14 136 - B12 162- E7 7 -33 - K4 59 - N6 111 - H12 137 - A14 C1 85 - M11 163- D6 138 - B11 D1 34 - K3 60 - P6 86 - N11 112 - H10 164-61 - L6 35 - K1 87 - P13 113 - G12 165-139 -A13 B6 88 -140 -10 -114 - G14 166-C6 N12 115 - G13 141 - A12 M12 142 - A11 12 – 116 - G11 13 - F3 39 - M1 65 - P7 91 - M13 117 - G10 143 - B10 169- C5 14 - F2 40 - L3 66 - M7 92 - P14 118 - F11 144 - A10 170-A5 15 - F1 41 - L2 67 - K7 93 - L13 119 - F14 145 - C10 171 B5 16 - F4 42 - N1 68 - M8 94 - N14 120- F13 146 - D10 172- A4 17 - F5 43 - M2 69 - P8 95 - L12 121 - F12 147 E10 173 D4 148 -44 - M3 18 - G4 70 - N8 96 - M14 122 - F10 174⁻ A3 C9 71 - L8 97 - L14 19 — 45 - N2 123 -E11 149 -B9 175-124 - E12 G1 72 - K8 98 - K13 150 -176-B4 21 -47 - P1 73 - L9 125 - E14 151-22 - G5 48 - N4 74 - P9 100- K12 126 - E13 152- E9 178- B3 23 - H3 49 - P2 75 - N9 101- K11 127 - D14 153- D8 179 C3 24 - H1 50 - M4 76 - M9 102- K10 128 - D11 154- B8 155- A8 25 - H2 51 - P3 77 - K9 103- J12 129 - C14 156- C8 52 - P4 78 - L10 104- J13 130 - D12 Internal connection - E5,F6,F7,F8,F9,G6,G7,G8,G9,H6,H7,H8,H9,J6,J7,J8,J9



- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. MicroStar BGA™ configuration


Electrical Characteristics

Thermal Characteristics

Productization

MicroStar BGA is a trademark of Texas Instruments Incorporated.

DAISY CHAIN NET LIST GHK 257 TOP VIEW 18 16 15 14 11 INDEX MARK B2-B1 K5-K6 V2-W2 R10-P10 V18-V19 B18-A18 K15-K14 D3-C2 L1-L2 U4-V3 W11-V11 T17-U18 J19-J18 C16-B17 A9-B9 C1-D2 L3-L6 W3-V4 C9-F9 U11-P11 U19-T18 J17-J14 A17-B16 D1-E3 L5-M1 W4-U5 A16-C15 E9-A8 R11-W12 T19-R17 J15-H19 F5-G6 M2-M3 R6-P7 V12-U12 P15-N14 H18-H17 E2-E1 M6-M5 V5-W5 R18-R19 H14-H15 F3-F2 N1-N2 U6-V6 W13-V13 P17-P18 G19-G18 C14-B14 A7-B7 G5-F1 N3-N6 R7-W6 U13-P13 N15-P19 G17-G14 E13-A14 C7-F7 H6-G3 P1-P2 P8-U7 W14-V14 M14-N17 F19-F18 F12-C13 A6-B6 R13-U14 N18-N19 G15-F17 B13-A13 H5-H3 R1-P6 R8-U8 W15-P14 M15-M17 E19-F14 E12-C12 A5-F6 H2-H1 R2-P5 V8-W8 V15-R14 M18-M19 E18-F15 B12-A12 B5-F6 J1-J2 R3-T1 W9-V9 U15-W16 L19-L18 A11-B11 C5-A4 E17-D19

GHK 257 PIN ASSIGNMENT NET LIST

V16-W17 L17-L15

T3-U2 P9-W10 U16-V17 L14-K19

K2-K3 V1-U3 V10-U10 W18-U17 K18-K17 B19-C17

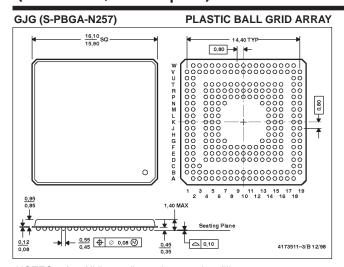
T2-U1 U9-R9

NC-E5

D18-C19

D17-C18

C11-E11

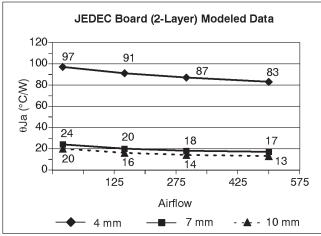

F11-A10

B10-C10 A2-C3

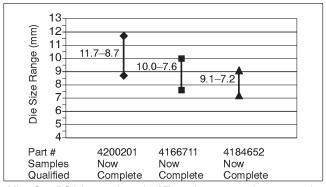
C4-B3

		I II WIT DI YEELT	PIN#BALL#	PIN#BALL#	PIN#BALL#	PIN#BALL#	PIN#BALL
1 - B2	33 - K5	65 – V2	97 -R10	129 - V18	161 – K15	193 -B18	225-E10
2 - B1	34 – K6	66 – W2	98 -P10	130 - V19	162- K14	194 –A18	226-F10
3 - D3	35 - L1	67 – U4	99 -W11	131 - T17	163- J19	195 -C16	227-A9
4 - C2	36 - L2	68 – V3	100 -V11	132 - U18	164- J18	196 - B17	228-B9
5 - C1	37 - L3	69 – W3	101 -U11	133 - U19	165- J17	197 –A17	229-C9
6 - D2	38 - L6	70 – V4	102-P11	134 - T18	166- J14	198 -B16	230-F9
7 - D1	39 - L5	71 – W4	103-R11	135 - T19	167- J15	199 -A16	231-E9
8 - E3	40 - M1	72 – U5	104 -W12	136 - R17	168- H19	200 -C15	232-A8
9 - F5	41 - M2	73 - R6	105-V12	137 - P15	169- H18	201 -E14	233-B8
10-G6	42 - M3	74 – P7	106-U12	138 - N14	170- H17	202 -F13	234-C8
11 – E2	43 - M6	75 – V5	107-P12	139 - R18	171- H14	203 -B15	235-F8
12-E1	44 - M5	76 - W5	108-R12	140 - R19	172- H15	204 -A15	236-E8
13-F3	45 - N1	77 – U6	109-W13	141 - P17	173- G19	205-C14	237-A7
14-F2	46 - N2	78 – V6	110 -V13	142 - P18	174- G18	206 -B14	238-B7
15-G5	47 - N3	79 - R7	111 -U13	143 - N15	175- G17	207 -E13	239-C7
16-F1	48 - N6	80 - W6	112 -P13	144 - P19	176- G14	208 -A14	240-F7
17-H6	49 - P1	81 - P8	113 -W14	145 - M14	177- F19	209 -F12	241-A6
18-G3	50 - P2	82 - U7	114 -V14	146 - N17	178- F18	210 -C13	242-B6
19-G2	51 - N5	83 - V7	115 -R13	147 - N18	179- G15	211 -B13	243-E7
20-G1	52 - P3	84 - W7	116 -U14	148 - N19	180- F17	212 -A13	244-C6
21 - H5	53 - R1	85 - R8	117 -W15	149 - M15	181- E19	213 -E12	245-A5
22-H3	54 - P6	86 – U8	118 -P14	150 - M17	182- F14	214 -C12	246-F6
23-H2	55 - R2	87 – V8	119 -V15	151 - M18	183- E18	215 -B12	247-B5
24-H1	56 - P5	88 - W8	120-R14	152 - M19	184- F15	216 -A12	248-E6
25-J1	57 - R3	89 - W9	121 -U15	153 - L19	185- E17	217 -A11	249-C5
26-J2	58 - T1	90 - V9	122-W16	154 - L18	186- D19	218 -B11	250-A4
27 - J3	59 - T2	91 – U9	123 - V16	155 - L17	187- D18	219 -C11	251-B4
28-J5	60 - U1	92 - R9	124 -W17	156 - L15	188- C19	220 -E11	252-A3
29-J6	61 - T3	93 - P9	125 - U16	157 - L14	189- D17	221 -F11	253-C4
30-K1	62 - U2	94 - W10	126 - V17	158 - K19	190- C18	222 -A10	254-B3
31-K2	63 - V1	95 - V10	127 - W18	159 - K18	191 - B19	223 -B10	255-A2
		96 - U10	128 - U17	160 - K17	192- C17	224 -C10	256-C3

257GJG PACKAGE OUTLINE (16 x 16 mm, 0.8 mm pitch)



- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. MicroStar BGA™ configuration


Electrical Characteristics

Thermal Characteristics

Productization

MicroStar BGA is a trademark of Texas Instruments Incorporated.

GJG 257 TOP VIEW DAISY CHAIN NET LIST INDEX MARK T10-R10 V18-V19 K16-K15 B18-A18 D10-E10 B2-B1 K4-K5 V2-W2 C1-C2 L6-L1 W3-V3 P11-W11 U19-U18 J14-J19 A17-B17 F9-A9 D1-D2 L2-L4 W4-V4 V11-T11 T19-T18 J18-J16 A16-B16 B9-D9 F4-F5 L5-M6 T5-R5 R11-P12 R16-R15 J15-H14 D15-E15 E9-F8 W12-V12 R19-R18 H19-H18 A15-B15 A8-B8 M1-M2 F5-F4 M4-M5 R6-T6 T12-R12 P15-P16 H16-H15 E14-D14 D8-E8 F1-F2 N7-N1 W6-V6 N13-W13 P19-P18 G13-G19 A14-B14 G7-A7 G6-G5 N2-N4 P7-R7 V13-T13 N14-N15 G18-G16 F13-E13 B7-D7 G2-G1 N5-N6 V7-W7 R13-P13 N18-N19 G15-G14 B13-A13 E7-F7 G4-H6 P1-P2 W14-V14 N16-M14 F19-F18 D13-F12 A6-B6 T7-P8 T14-R14 M19-M18 F16-F15 A12-B12 D6-E6 H1-H2 P4-P5 W8-V8 H4-H5 P6-R1 T8-R8 P14-W15 M16-M15 F14-E19 D12-E12 F6-A5 J4-J1 R2-R4 T9-W9 V15-T15 L16-L19 E18-E16 D11-A11 B5-D5 J2-J5 T1-T2 V9-R9 W16-V16 L18-L15 D19-D18 B11-E11 A4-B4 U1-T4 P9-P10 W17-T16 L14-K14 C19-D16 F11-F10 W10-V10 V17-W18 K19-K18 C18-B19 A10-B10 B3-A2 K1-K2 U2-V1 ID BALL-C3

PIN# BALL#	PIN#BALL#	PIN# BALL#	PIN# BALL#	PIN# BALL#	PIN# BALL#	PIN#BALL#	PIN#BAL
1 - B2	33 – K4	65 -V2	97 -T10	129 - V18	161-K16	193-B18	225-D10
2 - B1	34 - K5	66 -W2	98 -R10	130 -V 19	162-K15	194-A18	226-E10
3 - C1	35 – L6	67 -W3	99 -P11	131 - U19	163-J14	195-A17	227-F9
4 - C2	36 - L1	68 -V3	100-W11	132 -U18	164-J19	196-B17	228-A9
5 - D1	37 - L2	69 -W4	101-V11	133 -T19	165-J18	197-A16	229-B9
6 - D2	38 - L4	70 -V4	102-T11	134 -T18	166-J16	198-B16	230-D9
7 - E4	39 - L5	71 -T5	103-R11	135 -R16	167-J15	199-D15	231-E9
8 - E5	40 - M6	72 -R5	104-P12	136 -R15	168-H14	200-E15	232-F8
9 - E1	41 - M1	73 -W5	105-W12	137 -R19	169-H19	201-A15	233-A8
10-E2	42 - M2	74 -V5	106-V12	138 -R18	170-H18	202-B15	234-B8
11 -F5	43 - M4	75 -R6	107-T12	139 -P 15	171-H16	203-E14	235-D8
12-F4	44 - M5	76 -T6	108-R12	140 -P 16	172-H15	204-D14	236-E8
13-F1	45 - N7	77 -W6	109-N13	141 -P19	173-G13	205-A14	237-G7
14-F2	46 - N1	78 -V6	110-W13	142 -P18	174-G19	206-B14	238-A7
15 -G6	47 - N2	79 –P7	111 ¥13	143 -N14	175-G18	207-F13	239-B7
16-G5	48 - N4	80 -R7	112-T13	144 -N15	176-G16	208-E13	240-D7
17 -G2	49 - N5	81 -V7	113-R13	145 -N18	177-G15	209-B13	241-E7
18-G1	50 - N6	82 -W7	114-P13	146 -N19	178-G14	210-A13	242-F7
19-G4	51 – P1	83 -T7	115-W14	147 -N16	179-F19	211-D13	243-A6
20-H6	52 - P2	84 -P8	116-V14	148 -M14	180-F18	212-F12	244-B6
21 -H1	53 - P4	85 -W8	117-T14	149 -M19	181-F16	213-A12	245-D6
22 -H2	54 - P5	86 -V8	118-R14	150 -M18	182-F15	214-B12	246-E6
23-H4	55 - P6	87 -T8	119-P14	151 -M16	183-F14	215-D12	247-F6
24-H5	56 – R1	88 –R8	120-W15	152 - M15	184-E19	216-E12	248-A5
25 -J4	57 – R2	89 -T9	121-V15	153 L 16	185-E18	217-D11	249-B5
26 -J1	58 – R4	90 -W9	122-T15	154 -L19	186-E16	218-A11	250-D5
27 –J2	59 – T1	91 -V9	123-W16	155 L 18	187-D19	219-B11	251-A4
28 – J5	60 - T2	92 -R9	124-V16	156 L 15	188-D18	220-E11	252-B4
29 –J6	61 – U1	93 -P9	125-W17	157 - L 14	189-C19	221-F11	253-A3
30 -K6	62 – T4	94 -P10	126-T16	158 -K14	190-D16	222-F10	254-D4
31 –K1	63 – U2	95 –W10	127-V17	159 - K19	191-C18	223-A10	255-B3
32 -K2	64 - V1	96 -V10	128-W18	160 -K18	192-B19	224-B10	256-A2

Notes