

Type 2N3506 Geometry 1506 Polarity NPN

Qual Level: JAN - JANTXV

Generic Part Number: 2N3506

REF: MIL-PRF-19500/349

Features:

- General-purpose silicon transistor for switching and amplifier applications.
- Housed in TO-39 case.
- Also available in chip form using the 1506 chip geometry.
- The Min and Max limits shown are per MIL-PRF-19500/349 which Semicoa meets in all cases.

Request Quotation

Maximum Ratings

 $T_C = 25^{\circ}C$ unless otherwise specified

Rating	Symbol Rating		Unit	
Collector-Emitter Voltage	V_{CEO}	40	V	
Collector-Base Voltage	V_{CBO}	60	V	
Emitter-Base Voltage	V _{EBO}	5.0	V	
Collector Current, Continuous	I _C	3.0	А	
Power Dissipation, T _A = 25°C	P_T	1.0	W	
Derate above 25°C	·	5.71	mW/°C	
Operating Junction Temperature	T_J	-65 to +200	°C	
Storage Temperature	T _{STG}	-65 to +200	°C	

Electrical Characteristics

 $T_C = 25^{\circ}C$ unless otherwise specified

OFF Characteristics	Symbol	Min	Max	Unit
Collector-Base Breakdown Voltage		60		V
$I_{\rm C} = 10 \mu A$	$V_{(BR)CBO}$	60		V
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	40		V
$I_C = 10 \text{ mA}$	V (BR)CEO	40		v
Emitter-Base Breakdown Voltage	$V_{(BR)EBO}$	5.0		V
$I_E = 10 \mu\text{A}$	- (BIV)EBO	0.0		
Collector-Emitter Cutoff Current	I _{CEX1}		1.0	μA
$V_{CE} = 40 \text{ V}, V_{EB} = 4 \text{ V}$				
Collector-Emitter Cutoff Current	I _{CEX2}		1.0	μA
$V_{CE} = 40 \text{ V}, V_{EB} = 4 \text{ V}, T_A = +150^{\circ}\text{C}$ Collector Current Continuous				
V _{CB} = 50 V	I _C	3.0		Α
ON Characteristics	Symbol	 Min	Max	Unit
DC Current Gain	J	IVIII I	IVIAX	Ullit
$I_C = 500 \text{ mA}, V_{CF} = 1 \text{ V (pulsed)}$	h _{FE1}	50	250	
$I_C = 3.5 \text{ A}, V_{CE} = 2 \text{ V (pulsed)}$	h _{FE2}	40	200	
$I_C = 2.5 \text{ A}, V_{CE} = 2 \text{ V (pulsed)}$ $I_C = 2.5 \text{ A}, V_{CE} = 3 \text{ V (pulsed)}$		30	200	
$I_C = 3.0 \text{ A}, V_{CE} = 5 \text{ V (pulsed)}$ $I_C = 3.0 \text{ A}, V_{CE} = 5 \text{ V (pulsed)}$	h _{FE3}	25		
_ " ,	h _{FE4}			
$I_C = 500 \text{ mA}, V_{CE} = 1 \text{ V (pulsed)}, T_A = -55^{\circ}\text{C}$	h _{FE5}	25		
Base-Emitter Saturation Voltage $I_C = 500 \text{ mA}, I_B = 50 \text{ mA (pulsed)}$	V		1.0	V dc
$I_C = 300 \text{ mA}, I_B = 30 \text{ mA (pulsed)}$ $I_C = 1.5 \text{ A}, I_B = 150 \text{ mA (pulsed)}$	V _{BE(sat)1}	0.9	1.4	V dc V dc
$I_C = 1.5 \text{ A}, I_B = 150 \text{ mA (pulsed)}$ $I_C = 2.5 \text{ A}, I_B = 250 \text{ mA (pulsed)}$	V _{BE(sat)2}	0.9	2.0	V dc V dc
Collector-Emitter Saturation Voltage	V _{BE(sat)3}	 1	2.0	v uc
$I_C = 500 \text{ mA}, I_B = 50 \text{ mA (pulsed)}$	V _{CE(sat)1}		0.5	V dc
$I_C = 3.5 \text{ A}, I_B = 3.5 \text{ mA (pulsed)}$	V _{CE(sat)1}		1.0	V dc
$I_C = 2.5 \text{ A}, I_B = 250 \text{ mA (pulsed)}$	V _{CE(sat)2}		1.5	V dc V dc
Small Signal Characteristics	Symbol	Min	Max	Unit
Magnitude of Common Emitter, Small Signal, Short Circuit		IVIII I	IVIAX	Ullit
Forward Current Transfer Ratio	h _{FE}	3.0	15	
$V_{CE} = 5 \text{ V, } I_{C} = 100 \text{ mA, } f = 20 \text{ MHz}$	I' 'FEI	3.0		
Open Circuit Output Capacitance	_			_
$V_{CB} = 10 \text{ V}, I_{E} = 0, 100 \text{ kHz} < f < 1 \text{ MHz}$	C _{OBO}		40	pF
Input Capacitance, Output Open Circuited			200	
$V_{EB} = 3 \text{ V}, I_{C} = 0, 100 \text{ kHz} < f < 1 \text{ MHz}$	C _{IBO}		300	pF
Pulse Response Characteristics	Symbol	Min	Max	Unit
Delay Time			15	200
$I_C = 1.5 \text{ A}, I_{B1} = 150 \text{ mA}$	t _d		15	ns
Rise Time	t _r		30	ns
$I_C = 1.5 \text{ A}, I_{B1} = 150 \text{ mA}$	۲		30	113
Storage Time	t _s		55	ns
$I_C = 1.5 \text{ mA}, I_{B2} = I_{B1} = 150 \text{ mA}$	-5			
Fall Time	t _f		35	ns
$I_C = 1.5 \text{ mA}, I_{B2} = I_{B1} = 150 \text{ mA}$	İ			