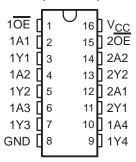
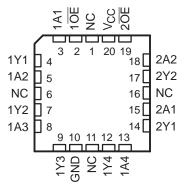
SCLS406B - APRIL 1998 - REVISED MAY 2000


- **EPIC** ™ (Enhanced-Performance Implanted **CMOS) Process**
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at $V_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}$
- Typical V_{OHV} (Output V_{OH} Undershoot) >2.3 V at $V_{CC} = 3.3$ V, $T_A = 25$ °C
- 2-V to 5.5-V V_{CC} Operation
- Support Mixed-Mode Voltage Operation on **All Ports**
- **Inverting Outputs**
- **Package Options Include Plastic** Small-Outline (D, NS), Shrink Small-Outline (DB), Thin Very Small-Outline (DGV), and Thin Shrink Small-Outline (PW) Packages, Ceramic Flat (W) Packages, Chip Carriers (FK), and DIPs (J)

description


The 'LV368A devices are hex buffers and line drivers designed for 2-V to 5.5-V V_{CC} operation. These devices are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

The 'LV368A devices are organized as dual 4-line and 2-line buffers/drivers with active-low output-enable ($1\overline{OE}$ and $2\overline{OE}$) inputs. When \overline{OE} is low, the device passes inverted data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

SN54LV368A . . . J OR W PACKAGE SN74LV368A . . . D, DB, DGV, NS, OR PW PACKAGE (TOP VIEW)

SN54LV368A . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

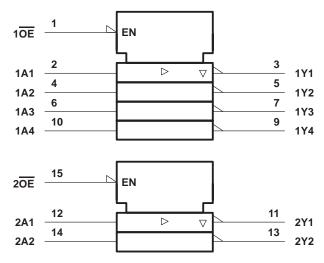
To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

The SN54LV368A is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74LV368A is characterized for operation from -40°C to 85°C.

FUNCTION TABLE (each buffer/driver)

INP	JTS	OUTPUT
OE	Α	Υ
Н	Х	Z
L	Н	Н
L	L	L

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


EPIC is a trademark of Texas Instruments

PRODUCT PREVIEW information concerns products in the formative or

SCLS406B - APRIL 1998 - REVISED MAY 2000

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, DB, DGV, J, NS, PW, and W packages.

logic diagram (positive logic)

Pin numbers shown are for the D, DB, DGV, J, NS, PW, and W packages.

SCLS406B - APRIL 1998 - REVISED MAY 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (see Note 1)	–0.5 V to 7 V
Voltage range applied to any output in the high-impedance	
or power-off state, V _O (see Note 1)	–0.5 V to 7 V
Output voltage range applied in the high or low state, V _O (see Notes 1 and 2)	0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC})	±50 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	±35 mA
Continuous current through V _{CC} or GND	±70 mA
Package thermal impedance, θ_{JA} (see Note 3): D package	
DGV package	82°C/W
DB package	
NS package	64°C/W
PW package	108°C/W
Storage temperature range, T _{Stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. This value is limited to 5.5 V maximum.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

SN54LV368A, SN74LV368A HEX BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS SCLS406B - APRIL 1998 - REVISED MAY 2000

recommended operating conditions (see Note 4)

			SN54L	V368A	SN74L	.V368A	
				MAX	MIN	MAX	UNIT
Vcc	Supply voltage		2	5.5	2	5.5	V
		V _{CC} = 2 V	1.5		1.5		
\ <i>/</i>	High lavel input valtage	V _{CC} = 2.3 V to 2.7 V	V _{CC} ×0.7		V _{CC} × 0.7		V
VIH	High-level input voltage	V _{CC} = 3 V to 3.6 V	V _{CC} ×0.7		V _{CC} ×0.7		V
		V _{CC} = 4.5 V to 5.5 V	V _{CC} ×0.7		V _{CC} ×0.7		
		V _{CC} = 2 V		0.5		0.5	
	Lauren Branch and Carlot	V _{CC} = 2.3 V to 2.7 V		V _{CC} ×0.3		V _{CC} ×0.3	V
V_{IL}	Low-level input voltage	V _{CC} = 3 V to 3.6 V		V _{CC} ×0.3		V _{CC} ×0.3	V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		V _{CC} × 0.3		V _{CC} × 0.3	
٧ _I	Input voltage	•	0	5.5	0	5.5	V
.,	Output voltage	High or low state	0	Vcc	0	Vcc	V
VO		3-state	0	5.5	0	5.5	V
		V _{CC} = 2 V		-50		-50	μΑ
	LPah laval autout autout	V _{CC} = 2.3 V to 2.7 V		-2		-2	
ЮН	High-level output current	V _{CC} = 3 V to 3.6 V		-8		-8	mA
		V _{CC} = 4.5 V to 5.5 V		-16		-16	
		V _{CC} = 2 V		50		50	μΑ
	Law law law tautawa a wasan	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		2		2	
IOL	Low-level output current	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		8		8	mA
		V _{CC} = 4.5 V to 5.5 V	1	16		16	
		V _{CC} = 2.3 V to 2.7 V	0	200	0	200	
Δt/Δν	Input transition rise or fall rate	V _{CC} = 3 V to 3.6 V	0	100	0	100	ns/V
		V _{CC} = 4.5 V to 5.5 V	0	20	0	20	
TA	Operating free-air temperature	•	-55	125	-40	85	°C

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

PRODUCT PREVIEW

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	.,	SN54	4LV368A		SN74	ILV368A	1	UNIT
PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	I _{OH} = -50 μA	2 V to 5.5 V	V _{CC} -0.1			V _{CC} -0.1			
Vari	$I_{OH} = -2 \text{ mA}$	2.3 V	2			2			V
VOH	I _{OH} = -8 mA	3 V	2.48			2.48			V
	I _{OH} = -16 mA	4.5 V	3.8			3.8			
	I _{OL} = 50 μA	2 V to 5.5 V			0.1			0.1	
Vo	I _{OL} = 2 mA	2.3 V			0.4			0.4	V
VOL	I _{OL} = 8 mA	3 V			0.44			0.44	V
	I _{OL} = 16 mA	4.5 V			0.55			0.55	
ΙĮ	$V_I = V_{CC}$ or GND	0 V to 5.5 V			±1			±1	μΑ
loz	$V_O = V_{CC}$ or GND	5.5 V			±5			±5	μΑ
Icc	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			20			20	μΑ
loff	V_I or $V_O = 0$ to 5.5 V	0 V			5			5	μΑ
C.	VI - Vac or GND	3.3 V							pF
Ci	VI = VCC or GND	5 V							PΓ

switching characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM TO		LOAD	T _A = 25°C		SN54LV368A		SN74LV368A		UNIT	
FARAMETER	(INPUT) (OUTPU	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
^t pd*	А	Υ									
t _{en} *	ŌĒ	Υ	C _L = 15 pF								ns
^t dis*	ŌĒ	Υ									
t _{pd}	А	Υ									
t _{en}	ŌĒ	Υ	C _L = 50 pF								ns
^t dis	ŌĒ	Υ								·	

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	FROM TO LOAD T _A = 25°C		SN54LV368A		SN74LV368A		UNIT			
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
^t pd*	А	Υ									
t _{en} *	ŌĒ	Υ	C _L = 15 pF								ns
^t dis*	ŌĒ	Υ									
^t pd	А	Υ									
t _{en}	ŌĒ	Y	C _L = 50 pF								ns
^t dis	ŌĒ	Υ									

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

SCLS406B - APRIL 1998 - REVISED MAY 2000

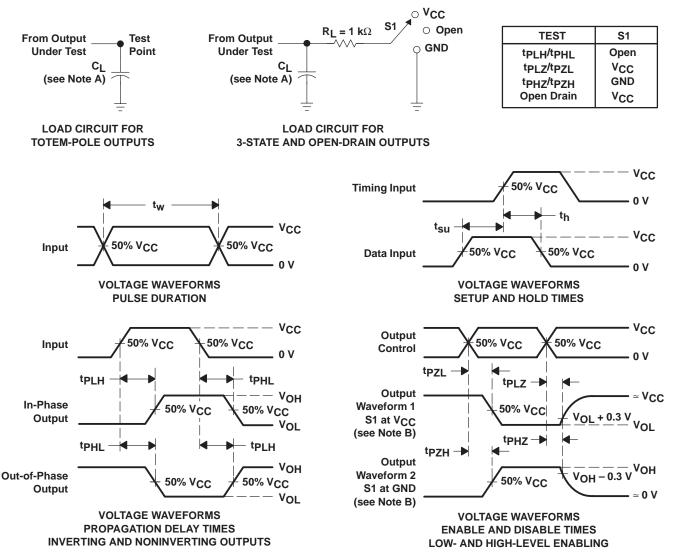
switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	LOAD T _A = 25°C SN54LV368A	T _A = 25°C			T _A = 25°C		T _A = 25°C SN54L\		SN74L\	/368A	UNIT
PARAWEIER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT		
^t pd*	А	Υ											
t _{en} *	ŌĒ	Υ	C _L = 15 pF								ns		
^t dis [*]	ŌĒ	Y	1										
t _{pd}	А	Υ											
t _{en}	ŌĒ	Υ	$C_{L} = 50 \text{ pF}$								ns		
^t dis	ŌĒ	Υ]										

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

noise characteristics, V_{CC} = 3.3 V, C_L = 50 pF, T_A = 25°C (see Note 5)

	PARAMETER	SN	UNIT		
	FARAWETER	MIN	TYP	MAX	ONIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}				V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}				V
VOH(V)	Quiet output, minimum dynamic VOH				V
V _{IH(D)}	High-level dynamic input voltage				V
V _{IL(D)}	Low-level dynamic input voltage				V


NOTE 5: Characteristics are for surface-mount packages only.

operating characteristics, $T_A = 25^{\circ}C$

PARAMETER			TEST CONDITIONS	VCC	TYP	UNIT
C _{pd} Power dissipation capacitance	Outputs enabled		224			
	Down dissination consistence	Outputs disabled	C: F0 =	3.3 V		
	Power dissipation capacitance	Outputs enabled	$C_L = 50 \text{ pF}, f = 10 \text{ MHz}$	5 V		pF
		Outputs disabled	1] 5 V		

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_Q = 50 \Omega$, $t_f \leq 3$ ns, $t_f \leq 3$ ns.
 - D. The outputs are measured one at a time with one input transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. t_{PHL} and t_{PLH} are the same as t_{pd} .

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated