Preferred Device ## **Sensitive Gate Triacs** ## **Silicon Bidirectional Thyristors** Designed for industrial and consumer applications for full wave control of ac loads such as appliance controls, heater controls, motor controls, and other power switching applications. - Sensitive Gate Allows Triggering by Microcontrollers and other Logic Circuits - Uniform Gate Trigger Currents in Three Quadrants; Q1, Q2, and Q3 - High Immunity to dv/dt 25 V/μs Minimum at 110°C - High Commutating di/dt 8.0 A/ms Minimum at 110°C - Minimum and Maximum Values of IGT, VGT and IH Specified for Ease of Design - On-State Current Rating of 8 Amperes RMS at 70°C - High Surge Current Capability 70 Amperes - Blocking Voltage to 800 Volts - Rugged, Economical TO220AB Package - Device Marking: Logo, Device Type, e.g., MAC8SM, Date Code #### **MAXIMUM RATINGS** (T_{.J} = 25°C unless otherwise noted) | Rating | Symbol | Value | Unit | |--|---------------------------|----------------|--------------------| | Peak Repetitive Off–State Voltage(1) (T _J = -40 to 110°C, Sine Wave, 50 to 60 Hz, Gate Open) MAC8SD | V _{DRM,}
VRRM | 400 | Volts | | MAC8SM
MAC8SN | | 600
800 | | | On-State RMS Current
(Full Cycle Sine Wave, 60 Hz,
T _C = 70°C) | IT(RMS) | 8.0 | Amps | | Peak Non-Repetitive Surge Current
(One Full Cycle Sine Wave, 60 Hz,
T _J = 110°C) | ITSM | 70 | Amps | | Circuit Fusing Consideration (t = 8.3 ms) | l ² t | 20 | A ² sec | | Peak Gate Power
(Pulse Width ≤ 1.0 μs, T _C = 70°C) | Рдм | 16 | Watts | | Average Gate Power
(t = 8.3 ms, T _C = 70°C) | P _{G(AV)} | 0.35 | Watt | | Operating Junction Temperature Range | TJ | -40 to
+110 | °C | | Storage Temperature Range | T _{stg} | -40 to
+150 | °C | ⁽¹⁾ VDRM and VRRM for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded. #### **ON Semiconductor** http://onsemi.com # TRIACS 8 AMPERES RMS 400 thru 800 VOLTS TO-220AB CASE 221A STYLE 4 | PIN ASSIGNMENT | | | |----------------|-----------------|--| | 1 | Main Terminal 1 | | | 2 | Main Terminal 2 | | | 3 | Gate | | | 4 | Main Terminal 2 | | #### **ORDERING INFORMATION** | Device | Package | Shipping | |--------|---------|---------------| | MAC8SD | TO220AB | 50 Units/Rail | | MAC8SM | TO220AB | 50 Units/Rail | | MAC8SN | TO220AB | 50 Units/Rail | **Preferred** devices are recommended choices for future use and best overall value. #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Value | Unit | |---|--------------------------------------|-------------|------| | Thermal Resistance — Junction to Case — Junction to Ambient | R _{ÐJC}
R _{ÐJA} | 2.2
62.5 | °C/W | | Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds | TL | 260 | °C | #### **ELECTRICAL CHARACTERISTICS** (T_{.1} = 25°C unless otherwise noted; Electricals apply in both directions) | Characteristic | Symbol | Min | Тур | Max | Unit | |--|--|----------------------|----------------------|-------------------|-------| | OFF CHARACTERISTICS | | | | | | | Peak Repetitive Blocking Current (V_D = Rated V_{DRM} , V_{RRM} ; Gate Open) $T_J = 25^{\circ}C$ $T_J = 110^{\circ}C$ | I _{DRM} ,
I _{RRM} | _
_ | _
_ | 0.01
2.0 | mA | | ON CHARACTERISTICS | | | • | | • | | Peak On-State Voltage* (I _{TM} = ±11A) | VTM | _ | _ | 1.85 | Volts | | Gate Trigger Current (Continuous dc) (V_D = 12 V , R_L = 100 Ω) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-) | lGT | .8
.8
.8 | 2.0
3.0
3.0 | 5.0
5.0
5.0 | mA | | Holding Current (V_D = 12V, Gate Open, Initiating Current = \pm 150mA) | lΗ | 1.0 | 3.0 | 10 | mA | | Latching Current (V_D = 24V, I_G = 5mA)
MT2(+), G(+)
MT2(-), G(-)
MT2(+), G(-) | IL | 2.0
2.0
2.0 | 5.0
10
5.0 | 15
20
15 | mA | | Gate Trigger Voltage (Continuous dc) (V _D = 12 V, R _L = 100 Ω) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-) | V _{GT} | 0.45
0.45
0.45 | 0.62
0.60
0.65 | 1.5
1.5
1.5 | Volts | | DYNAMIC CHARACTERISTICS | | | • | | • | | Rate of Change of Commutating Current VD = 400 V, ITM = 3.5 A, Commutating dv/dt = 10 V μ /sec, Gate Open, TJ = 110°C, f = 500 Hz, Snubber: CS = 0.01 μ F, RS =15 Ω , See Figure 16.) | di/dt(c) | 8.0 | 10 | _ | A/ms | | Critical Rate of Rise of Off-State Voltage (V_D = Rate V_{DRM} , Exponential Waveform, R_{GK} = 510 Ω , T_J = 110 $^{\circ}$ C) | dv/dt | 25 | 75 | _ | V/μs | ^{*}Indicates Pulse Test: Pulse Width ≤ 2.0 ms, Duty Cycle ≤ 2%. ## Voltage Current Characteristic of Triacs (Bidirectional Device) | Symbol | Parameter | |-----------------|---| | VDRM | Peak Repetitive Forward Off State Voltage | | IDRM | Peak Forward Blocking Current | | VRRM | Peak Repetitive Reverse Off State Voltage | | IRRM | Peak Reverse Blocking Current | | V _{TM} | Maximum On State Voltage | | lΗ | Holding Current | #### **Quadrant Definitions for a Triac** All polarities are referenced to MT1. With in-phase signals (using standard AC lines) quadrants I and III are used. Figure 1. RMS Current Derating Figure 2. Maximum On-State Power Dissipation Figure 3. On-State Characteristics **Figure 4. Transient Thermal Response** Figure 5. Typical Holding Current Versus Junction Temperature Figure 6. Typical Latching Current Versus Junction Temperature Figure 7. Typical Gate Trigger Current Versus Junction Temperature Figure 8. Typical Gate Trigger Voltage Versus Junction Temperature Figure 9. Typical Exponential Static dv/dt Versus Gate–MT1 Resistance, MT2(+) Figure 10. Typical Exponential Static dv/dt Versus Peak Voltage, MT2(+) Figure 11. Typical Exponential Static dv/dt Versus Junction Temperature, MT2(+) Figure 12. Typical Exponential Static dv/dt Versus Peak Voltage, MT2(-) Figure 13. Typical Exponential Static dv/dt Versus Junction Temperature, MT2(–) Figure 14. Typical Exponential Static dv/dt Versus Gate-MT1 Resistance, MT2(-) Note: Component values are for verification of rated (di/dt)_C. See AN1048 for additional information. Figure 16. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)_C #### **PACKAGE DIMENSIONS** #### TO-220AB CASE 221A-09 **ISSUE Z** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. | | INCHES | | MILLIMETERS | | |-----|--------|-------|-------------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.570 | 0.620 | 14.48 | 15.75 | | В | 0.380 | 0.405 | 9.66 | 10.28 | | С | 0.160 | 0.190 | 4.07 | 4.82 | | D | 0.025 | 0.035 | 0.64 | 0.88 | | F | 0.142 | 0.147 | 3.61 | 3.73 | | G | 0.095 | 0.105 | 2.42 | 2.66 | | Н | 0.110 | 0.155 | 2.80 | 3.93 | | J | 0.018 | 0.025 | 0.46 | 0.64 | | K | 0.500 | 0.562 | 12.70 | 14.27 | | L | 0.045 | 0.060 | 1.15 | 1.52 | | N | 0.190 | 0.210 | 4.83 | 5.33 | | Q | 0.100 | 0.120 | 2.54 | 3.04 | | R | 0.080 | 0.110 | 2.04 | 2.79 | | S | 0.045 | 0.055 | 1.15 | 1.39 | | T | 0.235 | 0.255 | 5.97 | 6.47 | | U | 0.000 | 0.050 | 0.00 | 1.27 | | ٧ | 0.045 | | 1.15 | | | Z | | 0.080 | | 2.04 | STYLE 4: PIN 1. MAIN TERMINAL 1 2. MAIN TERMINAL 2 3. GATE 4. MAIN TERMINAL 2 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. #### **PUBLICATION ORDERING INFORMATION** #### NORTH AMERICA Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada N. American Technical Support: 800-282-9855 Toll Free USA/Canada EUROPE: LDC for ON Semiconductor - European Support German Phone: (+1) 303-308-7140 (M-F 1:00pm to 5:00pm Munich Time) Email: ONlit-german@hibbertco.com French Phone: (+1) 303-308-7141 (M-F 1:00pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com **English Phone**: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time) Email: ONlit@hibbertco.com EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, England, Ireland CENTRAL/SOUTH AMERICA: Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit-asia@hibbertco.com JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 **Phone**: 81–3–5740–2745 **Email**: r14525@onsemi.com ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative.