FAIRCHILD

SEMICONDUCTOR

NC7WZ07 TinyLogic™ UHS Dual Buffer (Open Drain Outputs)

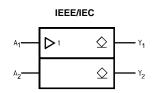
General Description

The NC7WZ07 is a dual buffer with open drain outputs from Fairchild's Ultra High Speed Series of TinyLogicTM in the space saving SC70 6-lead package. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V V_{CC} range. The inputs and outputs are high impedance when V_{CC} is 0V. Inputs tolerate voltages up to 7V independent of V_{CC} operating voltage.

Features

- Space saving SC70 6-lead package
- Ultra small MicroPak[™] leadless package
- Ultra High Speed: t_{PZL} 2.3 ns Typ into 50 pF at 5V V_{CC}

March 1999


Revised April 2002

- High I_{OL} Output Drive: +24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range: 1.65V to 5.5V
- \blacksquare Matches the performance of LCX when operated at 3.3V V_{CC}
- Power down high impedance inputs/outputs
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Patented noise/EMI reduction circuitry implemented

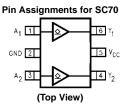
Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As		
NC7WZ07P6X	MAA06A	Z07	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3k Units on Tape and Reel		
NC7WZ07L6X	MAC06A	D3	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel		

Logic Symbol

Pin Descriptions

Pin Names	Description
A ₁ , A ₂	Data Inputs
Y ₁ , Y ₂	Output


Function Table

н

L

Input	Output		
Α	Y		
L	L		
н	Z		

Connection Diagrams

Pin One Orientation Diagram

AAA represents Product Code Top Mark - see ordering code Note: Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).

 Pad Assignments for MicroPak

 A1 1
 6
 Y1

 GND 2
 5
 V_{CC}

(Top Thru View)

4 Y₂

© 2002 Fairchild Semiconductor Corporation DS500218

Absolute Maximum Ratings(Note 1)

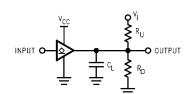
Supply Voltage (V _{CC})	-0.5V to +7V
DC Input Voltage (V _{IN})	-0.5V to +7V
DC Output Voltage (V _{OUT})	-0.5V to +7V
DC Input Diode Current (IIK)	
@ V _{IN} < -0.5V	–50 mA
DC Output Diode Current (I _{OK})	
@ V _{OUT} < -0.5V	–50 mA
DC Output Current (I _{OUT})	+50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±100 mA
Storage Temperature (T _{STG})	$-65^\circ C$ to $+150^\circ C$
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	180 mW

Recommended Operating Conditions (Note 2)

Supply Voltage Operating (V _{CC})	1.65V to 5.5V
Supply Voltage Data Retention (V_{CC})	1.5V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to 5.5V
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t_r, t_f)	
$V_{CC}=1.8 \text{V}, 2.5 \text{V} \pm 0.2 \text{V}$	0 ns/V to 20 ns/V
$V_{CC}=3.3V\pm0.3V$	0 ns/V to 10 ns/V
$V_{CC}=5.0V\pm0.5V$	0 ns/V to 5 ns/V
Thermal Resistance (θ_{JA})	350° C/W

Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.


DC Electrical Characteristics

Symbol	Parameter	V _{CC}		$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C$	C to +85°C	Units	Con	Conditions	
Symbol	Falameter	(V)	Min	Тур	Max	Min	Max	Units	COL		
VIH	HIGH Level Input Voltage	1.65 to 1.95	0.75 V _{CC}			0.75 V _{CC}		V			
		2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		v			
V _{IL}	LOW Level Input Voltage	1.65 to 1.95			0.25 V _{CC}		0.25 V _{CC}	V			
		2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	v			
I _{LKG}	HIGH Level Output	1.65 to 5.5			±5		±10	μA	$V_{IN} = V_{IH}$		
	Leakage Current	1.05 10 5.5			±0		10	μΛ	$V_{OUT} = V_{CC} \text{ or } GND$		
V _{OL}	LOW Level Output Voltage	1.65		0.0	0.1		0.0				
		1.8		0.0	0.1		0.1				
		2.3		0.0	0.1		0.1	V	$V_{IN} = V_{IL}$	$I_{OL}=100\;\mu A$	
		3.0		0.0	0.1		0.1				
		4.5		0.0	0.1		0.1				
		1.65		0.08	0.24		0.24			$I_{OL} = 4 \text{ mA}$	
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$	
		3.0		0.16	0.4		0.4	V		$I_{OL} = 16 \text{ mA}$	
		3.0		0.24	0.55		0.55			$I_{OL} = 24 \text{ mA}$	
		4.5		0.25	0.55		0.55			$I_{OL} = 32 \text{ mA}$	
I _{IN}	Input Leakage Current	0 to 5.5			±0.1		±1.0	μA	$0 \le V_{IN} \le 5$	5.5V	
I _{OFF}	Power Off Leakage Current	0.0			1		10	μΑ	V _{IN} or V _{OL}	_{JT} = 5.5V	
I _{CC}	Quiescent Supply Current	1.65 to 5.5			1.0		10	μA	$V_{IN} = 5.5V$, GND	

Symbol	Parameter	V _{cc}	T _A = +25°C			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		11-11-1	Conditions	Figure
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PZL}	Propagation Delay	1.65	1.8	6.6	11.5	1.8	12.6			
		1.8	1.8	5.5	9.5	1.8	10.5		$C_L = 50 \text{ pF}$	
		2.5 ± 0.2	1.2	3.7	5.8	1.2	6.4	ns	$RU = 500\Omega$	Figures 1, 3
		3.3 ± 0.3	0.8	2.9	4.4	0.8	4.8		$RD = 500\Omega$	1, 0
		5.0 ± 0.5	0.5	2.3	3.5	0.5	3.9		$V_I = 2 \times V_{CC}$	
t _{PLZ}	Propagation Delay	1.65	1.8	5.5	11.5	1.8	12.6			
		1.8	1.8	4.3	9.5	1.8	10.5		$C_L = 50 \text{ pF}$	_
		2.5 ± 0.2	1.2	2.8	5.8	1.2	6.4	ns	$RU = 500\Omega$	Figures 1, 3
		3.3 ± 0.3	0.8	2.1	4.4	0.8	4.8		$RD = 500\Omega$	1, 0
		5.0 ± 0.5	0.5	1.4	3.5	0.5	3.9		$V_I = 2 \times V_{CC}$	
C _{IN}	Input Capacitance	0		2.5				pF		
C _{OUT}	Output Capacitance	0		4.0				pF		
C _{PD}	Power Dissipation	3.3		3				~F	(Nata 2)	Figure 2
	Capacitance	5.0		4				pF	(Note 3)	Figure 2

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC}static).$

AC Loading and Waveforms

 $-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$ C_L includes load and stray capacitance Input PRR = 1.0 MHz; t_W = 500 ns

FIGURE 1. AC Test Circuit

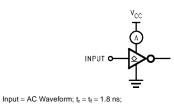
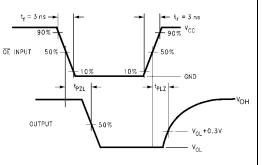
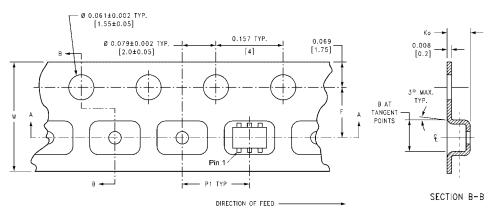
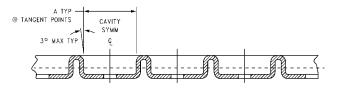



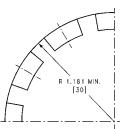
FIGURE 2. I_{CCD} Test Circuit

PRR = 10 MHz; Duty Cycle = 50%

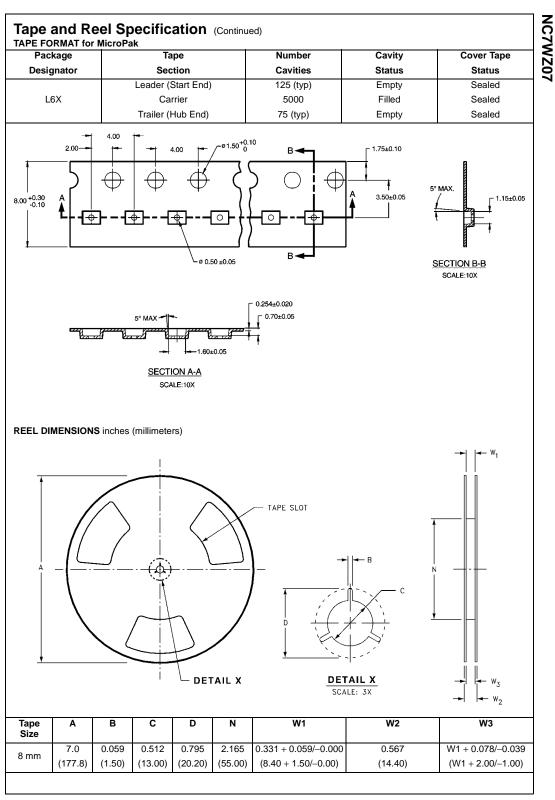


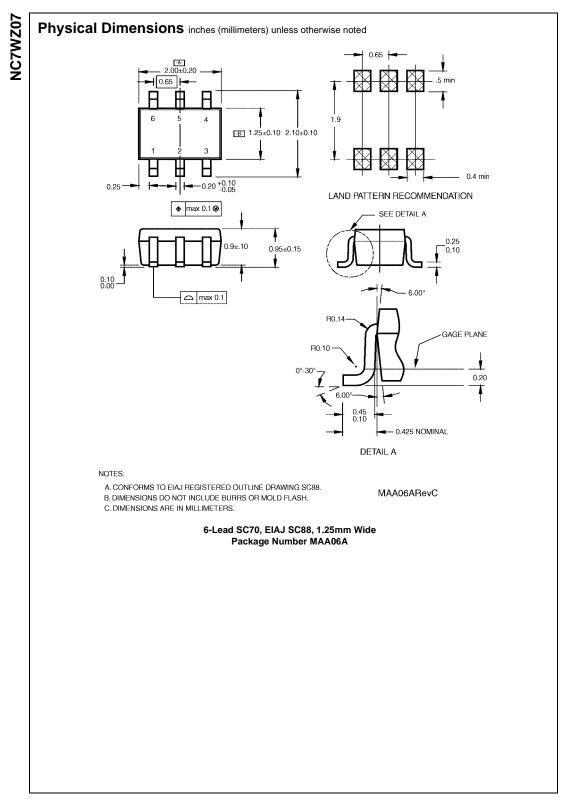


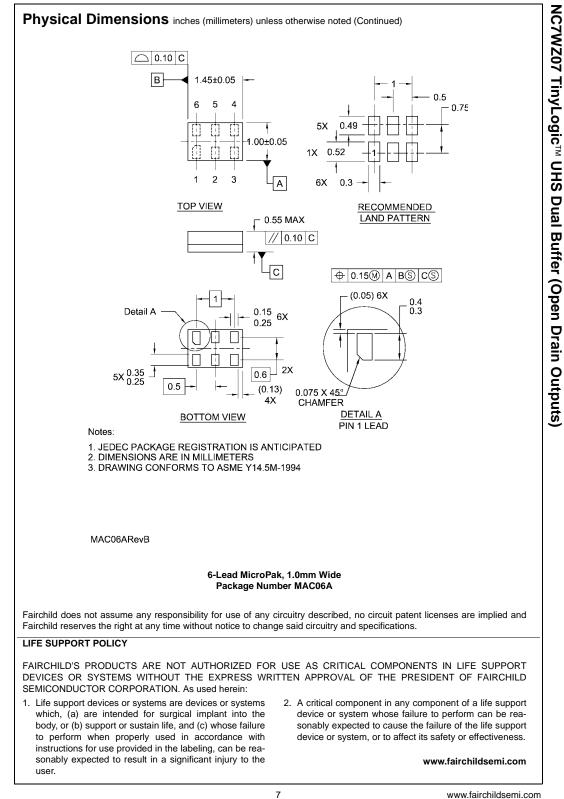
Tape and Reel Specification TAPE FORMAT for SC70


Package	Таре	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
P6X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

TAPE DIMENSIONS inches (millimeters)




SECTION A-A



BEND RADIUS NOT TO SCALE

Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-6 8 mm	0	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004
	0 11111	(2.35)	(2.45)	(3.5 ± 0.10)	(1.35 ± 0.10)	(4)	(8 ± 0.1)

