TOSHIBA **TLP832**

TOSHIBA PHOTO INTERRUPTER INFRARED LED + PHOTO TRANSISTOR

T L P 8 3 2

HOME ELECTRONICS EQUIPMENT SUCH AS VCRS AND CD PLAYERS OA EQUIPMENT SUCH AS COPIERS, PRINTERS, AND FACSIMILES AUTOMATIC SERVICING EQUIPMENT SUCH AS COMMODITY AND TICKET VENDING MACHINES

VARIOUS POSITION DETECTION SENSOR

The TLP832 photointerrupter consists of a GaAs infrared LED and a Si phototransistor.

Housed in a short lead package, this device is ideal for automatic mounting.

Printed wiring board direct mounting type (with a locating pin)

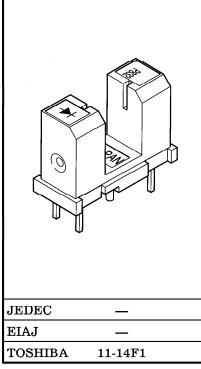
Short lead type enabling automatic mounting

: Lead length 3.4±0.3mm

Board thickness : 1mm or less

Gap : 5mm

Resolution : Slit width 0.5mm


High current transfer ratio $: I_C/I_F = 5\%$ (min)

High response speed : t_r , $t_f = 15 \mu s$ (typ.)

Detector side is of visible light cut type.

Material of the package : Polybutylene terephthalate

(UL94V-0, Black color)

Weight: 0.58g (typ.)

961001EBC2

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.

The products described in this document are subject to foreign exchange and foreign trade control laws.

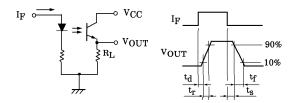
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of TOSHIBA CORPORATION or others.

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC		SYMBOL	RATING	UNIT	
LED	Forward Current	${ m I_F}$	50	mA	
	Forward Current Derating (Ta>25°C)	$\Delta I_{\mathbf{F}} / {^{\circ}\mathbf{C}}$	-0.33	mA/°C	
	Reverse Voltage	v_{R}	5	V	
ده	Collector-Emitter Voltage	v_{CEO}	35	V	
DETECTER	Emitter-Collector Voltage	v_{ECO}	5	V	
	Collector Power Dissipation	PC	75	mW	
	Collector Power Dissipation Derating (Ta>25°C)	ΔP _C /°C	-1	mW/°C	
	Collector Current	$I_{\mathbf{C}}$	50	mA	
Operating Temperature		$T_{ m opr}$	-30~85	°C	
Storage Temperature		$\mathrm{T_{stg}}$	-40~100	°C	
So	ldering Temperature (5s)(Note 1)	T_{sol}	260	$^{\circ}\mathrm{C}$	

Note 1: At the location of 1.5mm from the resin package bottom

PRODUCT INDICATION


RECOMMENDED OPERATING CONDITIONS

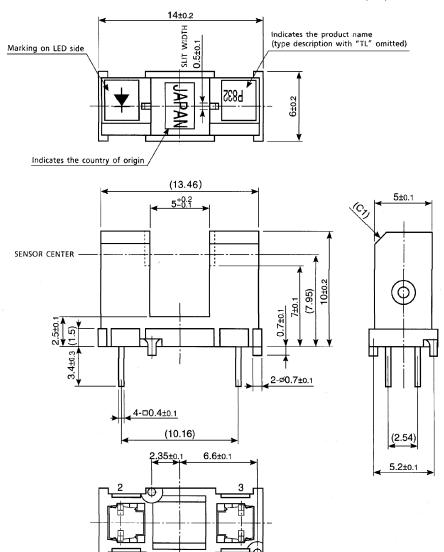
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{CC}	ı	5	24	V
Forward Current	$\mathbf{I_F}$			25	mA
Operating Temperature	$T_{ m opr}$	-10	_	75	°C

CHARACTERISTIC		SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
LED	Forward Voltage	$V_{\mathbf{F}}$	$I_{\mathbf{F}} = 10 \text{mA}$	1.00	1.15	1.30	V
	Reverse Current	$I_{ m R}$	$V_R = 5V$	_		10	μ A
	Peak Emission Wavelength	$\lambda_{\mathbf{P}}$	$I_{ m F}\!=\!10{ m mA}$	_	940	_	nm
DETECTOR	Dark Current	I _D (I _{CEO})	$V_{CE} = 24V, I_{F} = 0$	_	_	0.1	μ A
	Peak Sensitivity Wavelength	$\lambda_{\mathbf{P}}$		_	870	_	nm
COUPLED	Current Transfer Ratio	I_{C}/I_{F}	$V_{CE}=2V$, $I_F=10mA$	5	_	100	%
	Collector-Emitter Saturation Voltage	V _{CE} (sat)	$I_{ m F} = 20 { m mA}, \ I_{ m C} = 0.5 { m mA}$		0.1	0.35	V
	Rise Time	t _r	Vac-5V Ia-1mA Pr-1kO		15	50	
	Fall Time	t_f	$V_{CC}=5V$, $I_{C}=1mA$, $R_{L}=1k\Omega$	_	15	50	μ s

OPTO ELECTRICAL CHARACTERISTICS (Ta = 25°C)

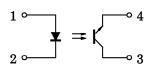
Note 2: Switching time measurement circuit and waveform

PRECAUTIONS

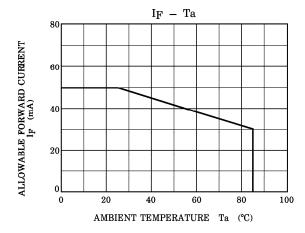

When removing flux with chemicals after soldering, clean only the leads on the soldering side; do
not dip the whole package for cleaning.
 Chemicals remaining on an LED or phototransistor light emitter or receiver, if any, would have a

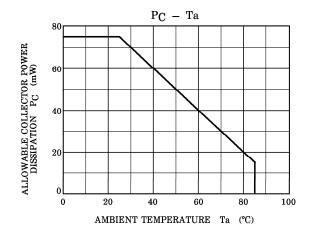
bad influence to the optical characteristics and it may severely lower the conversion efficiency.

- The environment to install the device should be determined carefully. Oil or chemicals may cause the package to be dissolved or cracked.
- The device should be mounted on an unwarped surface.
- Install this device as avoiding the disturbance light as possible. A visible light cut-off type phototransistor which blocks light with frequencies of 700nm or above is used. However, the device cannot block infrared light with a wavelength of 700nm or more, and it may do mistaken movements.
- The current transfer ratio is gradually lowered when infrared LED is powered. The efficiency deterioration by aging should be considered when designing the circuit.

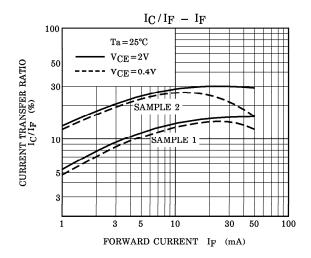

OUTLINE: TOSHIBA Unit: mm

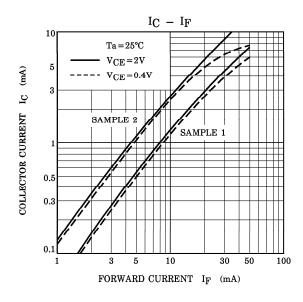
(): REFERENCE VALUE

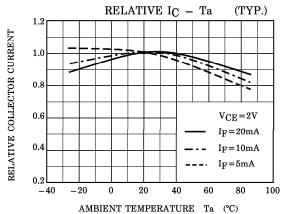



Weight: 0.58g (TYP.)

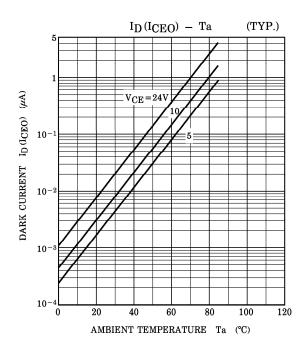
PIN CONNECTION

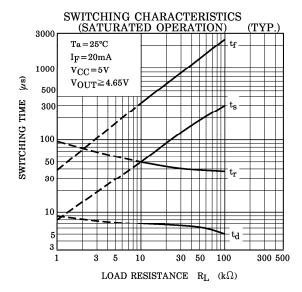


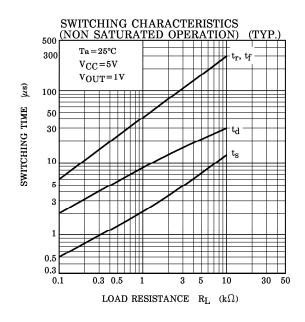

- 1. ANODE
- 2. CATHODE
- 3. COLLECTOR
- 4. EMITTER

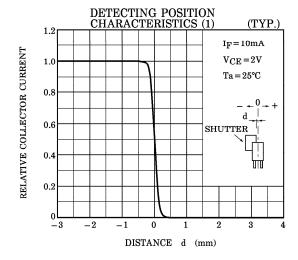


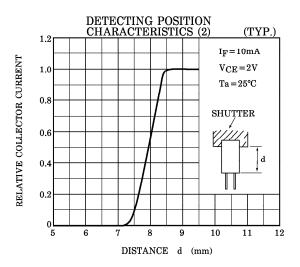


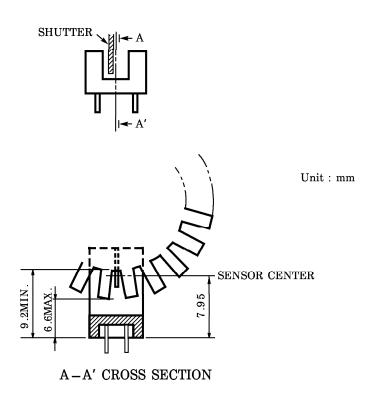












POSITIONING OF SHUTTER AND DEVICE

To operate correctly, make sure that the shutter and the device are positioned as shown in the figure below.

The shit pitch of the shutter must be set wider than the slit width of the device.

Determine the width taking the switching time into consideration.

