256K x 8 Static RAM #### **Features** - Low voltage range: - -2.7-3.6V - Ultra-low active power - · Low standby power - Easy memory expansion with $\overline{\text{CS}}_1/\text{CS}_2$ and $\overline{\text{OE}}$ features - TTL-compatible inputs and outputs - · Automatic power-down when deselected - · CMOS for optimum speed/power #### **Functional Description** The CY62138V is a high-performance CMOS static RAM organized as 262,144 words by 8 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL™) in portable applications such as cellular telephones. The device also has an automatic power-down feature that reduces power con- sumption by 99% when addresses are not toggling. The device can be put into standby mode when deselected ($\overline{\text{CS}}_1$ HIGH or $\overline{\text{CS}}_2$ LOW). Writing to the device is accomplished by taking Chip Enable One (\overline{CS}_1) and Write Enable (\overline{WE}) inputs LOW and Chip Enable Two (CS_2) HIGH. Data on the eight I/O pins (I/O_0) through I/O_7) is then written into the location specified on the address pins (A_0) through A_{17} . Reading from the device is accomplished by taking Chip Enable One (\overline{CS}_1) and Output Enable (\overline{OE}) LOW while forcing Write Enable (\overline{WE}) and Chip Enable Two (CS_2) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins. The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected (\overline{CS}_1 HIGH or CS $_2$ LOW), the outputs are disabled (\overline{OE} HIGH), or during a write operation (\overline{CS}_1 LOW, CS $_2$ HIGH, and \overline{WE} LOW). The CY62138V is available in a 36-ball FBGA. More Battery Life and MoBL are trademarks of Cypress Semiconductor Corporation. ## **Maximum Ratings** | DC Input Voltage ^[1] | -0.5V to V _{CC} + 0.5 V | |--|------------------------------------| | Output Current into Outputs (LOW) | 20 mA | | Static Discharge Voltage(per MIL-STD-883, Method 3015) | >2001V | | Latch-Up Current | >200 mA | ## **Operating Range** | Device | Range | Ambient
Temperature | V _{CC} | |----------|------------|------------------------|-----------------| | CY62138V | Industrial | -40°C to +85°C | 2.7V to 3.6V | #### **Product Portfolio** | | | | | | | Power Dis | sipation (In | dustrial) | |----------|-----------------------|-------------------------------------|----------------------|-------|---------------------|------------------------|-----------------------------|-----------| | | V _{CC} Range | | | | Operat | ing (I _{cc}) | Standby (I _{SB2}) | | | Product | V _{CC(min)} | V _{CC(typ)} ^[2] | V _{CC(max)} | Speed | Typ. ^[2] | Maximum | Typ. ^[2] | Maximum | | CY62138V | 2.7V | 3.0V | 3.6V | 70 ns | 7 mA | 15 mA | 1 μΑ | 15 μΑ | #### **Electrical Characteristics** Over the Operating Range | | | | | | | CY62138\ | Y62138V | | |------------------|--|--|------------------------|----|------|----------------------------|------------------------|------| | Parameter | Description | Test Condi | Test Conditions | | | Typ. ^[2] | Max. | Unit | | V _{OH} | Output HIGH Voltage | $I_{OH} = -1.0 \text{ mA}$ | V _{CC} = 2. | 7V | 2.4 | | | V | | V _{OL} | Output LOW Voltage | I _{OL} = 2.1 mA | V _{CC} = 2. | 7V | | | 0.4 | V | | V _{IH} | Input HIGH Voltage | | V _{CC} = 3.6V | | 2.2 | | V _{CC} + 0.5V | V | | V _{IL} | Input LOW Voltage | | V _{CC} = 2. | 7V | -0.5 | | 0.8 | V | | I _{IX} | Input Load Current | $GND \le V_1 \le V_{CC}$ | • | | -1 | <u>+</u> 1 | +1 | μΑ | | l _{OZ} | Output Leakage Current | GND \leq V _O \leq V _{CC} , Output Disabled | | | -1 | +1 | +1 | μΑ | | Icc | V _{CC} Operating Supply
Current | $I_{OUT} = 0 \text{ mA},$
$f = f_{MAX} = 1/t_{RC},$
CMOS Levels | V _{CC} = 3. | 6V | | 7 | 15 | mA | | | | I _{OUT} = 0 mA,
f = 1 MHz,
CMOS Levels | | • | | 1 | 2 | mA | | I _{SB1} | Automatic CE
Power-Down Current—
CMOS Inputs | $\label{eq:control_control} \begin{split} \overline{CE} & \geq V_{CC} - 0.3V, \\ V_{IN} & \geq V_{CC} - 0.3V \text{ or } \\ V_{IN} & \leq 0.3V, f = f_{MAX} \end{split}$ | | | | | 100 | μА | | I _{SB2} | Automatic CE
Power-Down Current—
CMOS Inputs | | V _{CC} = 3.6V | LL | | 1 | 15 | μА | #### Notes: - 1. $V_{IL}(min) = -2.0V$ for pulse durations less than 20 ns. - 2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC} Typ, T_A = 25°C. #### Capacitance^[3] | Parameter | Description | Test Conditions | Max. | Unit | |------------------|--------------------|------------------------------------|------|------| | C _{IN} | Input Capacitance | $T_A = 25^{\circ}C$, $f = 1$ MHz, | 6 | pF | | C _{OUT} | Output Capacitance | $V_{CC} = V_{CC(typ)}$ | 8 | pF | #### Note: ^{3.} Tested initially and after any design or process changes that may affect these parameters. #### **AC Test Loads and Waveforms** 62138V-4 Equivalent to: THÉVENIN EQUIVALENT | Parameters | 3.0V | Unit | |-----------------|------|-------| | R1 | 1105 | Ohms | | R2 | 1550 | Ohms | | R _{TH} | 645 | Ohms | | V _{TH} | 1.75 | Volts | ## Data Retention Characteristics (Over the Operating Range) | Parameter | Description | Conditions ^[4] | | Min. | Typ . ^[2] | Max. | Unit | |---------------------------------|---|---|----|------|-----------------------------|------|------| | V _{DR} | V _{CC} for Data Retention | | | 1.0 | | 3.6 | V | | I _{CCDR} | Data Retention Current | $\begin{aligned} &V_{CC} = 1.0V\\ &CE \geq V_{CC} - 0.3V,\\ &V_{IN} \geq V_{CC} - 0.3V \text{ or }\\ &V_{IN} \leq 0.3V\\ &No \text{ input may exceed}\\ &V_{CC} + 0.3V \end{aligned}$ | LL | | 0.1 | 5 | μА | | t _{CDR} ^[3] | Chip Deselect to Data
Retention Time | | | 0 | | | ns | | t _R | Operation Recovery Time | | | 100 | | | μs | #### Data Retention Waveform^[5] - 4. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC} typ., and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance. \overline{CE} is the combination of both \overline{CS}_1 and \overline{CS}_2 . ## Switching Characteristics Over the Operating $Range^{[4]}$ | | | 70 | ns | | |-------------------------------|-------------------------------------|------|------|------| | Parameter | Description | Min. | Max. | Unit | | READ CYCLE | | | | • | | t _{RC} | Read Cycle Time | 70 | | ns | | t _{AA} | Address to Data Valid | | 70 | ns | | t _{OHA} | Data Hold from Address Change | 10 | | ns | | t _{ACE} | CE LOW to Data Valid | | 70 | ns | | t _{DOE} | OE LOW to Data Valid | | 35 | ns | | t _{LZOE} | OE LOW to Low Z ^[6] | 5 | | ns | | t _{HZOE} | OE HIGH to High Z ^[6, 7] | | 25 | ns | | t _{LZCE} | CE LOW to Low Z ^[6] | 10 | | ns | | t _{HZCE} | CE HIGH to High Z ^[6, 7] | | 25 | ns | | t _{PU} | CE LOW to Power-Up | 0 | | ns | | t _{PD} | CE HIGH to Power-Down | | 70 | ns | | WRITE CYCLE ^[8, 9] | • | | | • | | t _{WC} | Write Cycle Time | 70 | | ns | | t _{SCE} | CE LOW to Write End | 60 | | ns | | t _{AW} | Address Set-Up to Write End | 60 | | ns | | t _{HA} | Address Hold from Write End | 0 | | ns | | t _{SA} | Address Set-Up to Write Start | 0 | | ns | | t _{PWE} | WE Pulse Width | 50 | | ns | | t _{SD} | Data Set-Up to Write End | 30 | | ns | | t _{HD} | Data Hold from Write End | 0 | | ns | | t _{HZWE} | WE LOW to High Z ^[6, 7] | | 25 | ns | | t _{LZWE} | WE HIGH to Low Z ^[6] | 10 | | ns | ## **Switching Waveforms** ## Read Cycle No. 1^[10, 11] C62138V-5 #### Notes: - At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write. The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}. - 10. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$. - 11. WE is HIGH for read cycle. ## Switching Waveforms (continued) # Write Cycle No. 1 ($\overline{\text{WE}}$ Controlled) $^{[5, 8, 13, 14]}$ - Address valid prior to or coincident with \(\overline{CE}\) transition LOW. Data I/O is high impedance if \(\overline{OE} = V_{IH}\). If \(\overline{CE}\) goes HIGH simultaneously with \(\overline{WE}\) HIGH, the output remains in a high-impedance state During this period, the I/Os are in output state and input signals should not be applied. # Switching Waveforms (continued) ## Write Cycle No. 3 (WE Controlled, OE LOW) [5, 9, 14] #### **Typical DC and AC Characteristics** # STANDBY CURRENT vs. AMBIENT TEMPERATURE #### **Truth Table** | CS ₁ | CS ₂ | WE | ŌĒ | Inputs/Outputs | Mode | Power | |-----------------|-----------------|----|----|----------------|---------------------------|----------------------------| | Н | Х | Х | Х | High Z | Deselect/Power-Down | Standby (I _{SB}) | | Х | L | Х | Х | High Z | Deselect/Power-Down | Standby (I _{SB}) | | L | Н | Н | L | Data Out | Read | Active (I _{CC}) | | L | Н | L | Х | Data In | Write | Active (I _{CC}) | | L | Н | Н | Н | High Z | Deselect, Output Disabled | Active (I _{CC}) | #### **Ordering Information** | Speed (ns) | Ordering Code | Package
Name | Package Type | Operating
Range | |------------|------------------|-----------------|------------------------|--------------------| | 70 | CY62138VLL-70BAI | BA48 | 48 Ball Fine Pitch BGA | Industrial | Document #: 38-00729-*B #### **Package Diagram** #### 48-Ball (7.00 mm x 7.00 mm) FBGA BA48 TOP VIEW 51-85096-A