
Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 1 of 63 AP2900  06.97

Microcontrollers
ApNote AP2900

o additional file
APXXXX01.EXE available

Connecting C166 and C500 Microcontrollers to CAN

This application note describes the CAN Protocol, Siemens CAN devices and different
options for connecting devices of the Siemens C166 and C500 microcontroller
families to the Controller Area Network (CAN).

 Author: Axel Wolf / Siemens HL MC AT



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 2 of 63 AP2900  06.97

Abbreviations and Symbols..........................................................................................3

1 Introduction ...................................................................................................................4

2 The Controller Area Network (CAN) ............................................................................6

2.1 CAN Basics .................................................................................................................6

2.2 Addressing and Bus Arbitration...................................................................................7

2.3 The different CAN Frames and their Formats .............................................................8

2.4 The Nominal Bit Time................................................................................................14

2.5 Error Detection and Error Handling...........................................................................15

2.6 The different CAN Implementations ..........................................................................16

 

3 The Siemens CAN Devices C167CR, C515C and SAE 81C90/91.............................18

3.1 The Microcontroller Families C500 and C166 at a Glance .......................................18

3.2 The CAN Module on the C167CR / C515C ...............................................................19

3.3 The Stand-Alone Full-CAN Controller SAE 81C90/91 ..............................................26

 

4 Examples for the Connection of Siemens Microcontrollers to CAN ......................29

4.1 Connecting the C167CR / C515C to CAN.................................................................29

4.2 Connecting the SAB 80C166 to CAN via the SAE 81C90.........................................30

4.3 Connecting the C511 / C513 to CAN via the SAE 81C91 .........................................32

4.4 A Proposal for the CAN Bus Cables..........................................................................33

 

5 Ways of Handling the SAE 81C90/91 and the CAN Module

on the C167CR / C515C ..............................................................................................34

5.1 Notes on the following Sections ................................................................................34

5.2 Accessing the Registers of the CAN Module / the SAE 81C90/91............................34

5.3 Configuration of the Bit Timing..................................................................................37

5.4 Ways of Handling the CAN Module...........................................................................41

5.5 Ways of Handling the SAE 81C90/91 .......................................................................55

5.6 How to use the Basic CAN Features .........................................................................61

AP2900 ApNote - Revision History
Actual Revision : Rel.02        Previous Revison: Rel. 01
Page of
actual Rel.

Page of
prev. Rel.

Subjects changes since last release)

--- --- Minor changes; Register names 81C90/91 adjusted.



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 3 of 63 AP2900  06.97

Abbreviations and Symbols

The following abbreviations and symbols are used throughout this application note:

ABUS "Allgemeine Bitserielle Universelle Schnittstelle" (VW protocol)
BL1, BL2 Bit timing registers of the SAE 81C90/91
BRP Baudrate Prescaler
BSP Bit Stream Processor
BTL Bit Timing Logic
CAN Controller Area Network (Bosch)
CAN_H, CAN_L Names of the CAN bus lines
CCE Bit in the Control Register of the CAN module
CiA CAN in Automation (CAN User Group)
CIL CPU Interface Logic
CPU Central Processing Unit
CRC Cyclic Redundancy Check
CSMA/CD Carrier Sense Multiple Access / Collision Detection
CTRL Control Register of the SAE 81C90/91
EML Error Management Logic
IC Integrated Circuit
IM Bit in the MOD Register of the SAE 81C90/91
INIT Bit in the Control Register of the CAN module
INT Interrupt Register of the SAE 81C90/91
J1850 Protocol from Chrysler, GM, Ford
MOD Status- and Control Register of the SAE 81C90/91
NDA Non-Destructive Arbitration
NRZ Non-Return-to-Zero
PEC Peripheral Event Controller
PLCC Plastic Leaded Chip Carrier
PWM Pulse Width Modulation
RAM Random Access Memory
REC Receive Error Counter
RES Bit in the MOD Register of the SAE 81C90/91
ROM Read Only Memory
RTR Remote Transmission Request
Rx0, Rx1 Receive Inputs of the SAE 81C90/91
SJW Synchronisation Jump Width
TCEC Transmit Check Error Counter
TCL Transceiver Control Logic
TEC Transmit Error Counter
TSEG1, TSEG2 Segments of the CAN bit cell
Tx0, Tx1 Transmit Outputs of the SAE 81C90/91
USART Universal Synchronous/Asynchronous Receiver/Transmitter
VAN Vehicle Area Network (Peugeot, Renault)
XBUS Chip-internal bus on the C167CR



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 4 of 63 AP2900  06.97

This application note describes the CAN1 Protocol, Siemens CAN devices and different
options for connecting devices of the Siemens C166 and C500 microcontroller families to
the Controller Area Network (CAN). It replaces the German application note "CAN-
Anschluß für die Mikrocontrollerfamilien C166 and C500".

After the introduction (Section 1), Section 2 introduces the reader to the Controller Area Network
(CAN). Section 3 describes the Siemens CAN devices, the 16-bit microcontroller C167CR, the 8-
bit microcontroller C515C, and the Stand-Alone Full-CAN Controller SAE 81C90/91. Section 4
gives hardware examples for connection of Siemens microcontrollers to CAN. Finally, in Section
5, ways of handling the SAE 81C90/91 and the CAN module on the C167CR and the C515C are
given.

Whilst every effort has been made to ensure the accuracy of information contained in this
application note, the authors cannot be held responsible for any consequences arising from its
use.

2 Introduction

Ever increasing quantities of electronic devices are fitted to modern motor vehicles.
Examples of such devices include engine management systems, active suspension, ABS,
gear control, lighting control, air conditioning, airbags and central locking. All this means
more safety and more comfort for the driver and of course a reduction of fuel consumption
and exhaust emissions. To improve the behaviour of the vehicle even further, it is
necessary for the different control systems (and their sensors) to exchange information. At
present, this is usually done by discrete interconnection of the different systems (i.e. point
to point wiring). The requirement for information exchange has now grown to such an
extent that a cable network with a length of up to several kilometers and many connectors
is required. This produces growing problems concerning material cost, production time
and reliability.
The solution to this problem is the connection of the control systems via a serial bus
system. This bus has to fulfill some special requirements due to its usage in a vehicle:

• Data Rate

Much of the data that is exchanged by the control systems (or by sensors) has to be
processed in real time which requires very fast transmission. Data items may differ in
transmission priority (e.g. Airbag data is likely to be high priority, Air Conditioning data is
likely to be low priority). For very high priority data the latency period between the
transmission request and the actual start of the transmission is very important and must
be minimized. The serial bus therefore must provide very fast transmission, short
message length and bus access prioritisation.

• Data Integrity

The bus must have a high resistance to Electromagnetic Interference. Erroneous
messages must be detected and repeated. To ensure valid data across the sytem, every

                                               
1  Controller Area Network (CAN): License of Robert Bosch GmbH



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 5 of 63 AP2900  06.97

bus node has to be informed about an error. Bus communication must not be disturbed if
one (or more) bus nodes malfunction. Faulty nodes must withdraw from bus
communication on their own. The bus must therefore have a linear structure with equal
bus nodes (multimaster concept).

• • Data Sharing

All control systems needing a common data item should be able to simultaneously receive
this data item from the bus (e.g. vehicle speed might be used by the engine management
system, active suspension ABS and gear control) The bus must therefore have multicast
capability.

Several different serial bus systems have been developed for the use in motor vehicles,
each of them trying, as far as possible, to fulfill the above requirements. Examples are
ABUS from Volkswagen, VAN (Vehicle Area Network) developed by Peugeot and Renault,
the J1850 protocol from Chrysler, General Motors and Ford and, of course, the Controller
Area Network (CAN) from Robert Bosch GmbH in Germany. These protocols mostly differ
in transfer rate, signal coding, message format, error detection, and error handling.

The CAN protocol was defined by Bosch in the mid-eighties. For some time Siemens have
also offered CAN devices such as the stand-alone Full-CAN controller SAE 81C90/91 and
the C167CR and the C515C microcontrollers (high-end 16-bit or 8-bit microcontrollers
respectively with an on-chip CAN module).

CAN has now clearly established a market leading position and indeed a number of
vehicle manufacturers have abandoned their proprietry protocols and have chosen the
CAN protocol. More than 15 Million CAN nodes are in use worldwide.



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 6 of 63 AP2900  06.97

2 The Controller Area Network (CAN)

 
2.1 CAN Basics

CAN is an asynchronous serial bus system with one logical bus line. It has an open, linear
bus structure with equal bus nodes. A CAN bus consists of two or more nodes. The
number of nodes on the bus may be changed dynamically without disturbing the
communication of other nodes. This allows easy connection and disconnection of bus
nodes (e.g. for addition of system function, error recovery or bus monitoring).

The bus logic corresponds to a "wired-AND" mechanism, "recessive" bits (mostly, but not
necessarily equivalent to the logic level "1") are overwritten by "dominant" bits (logic level
mostly "0"). As long as no bus node is sending a dominant bit, the bus line is in the
recessive state, but a dominant bit from any bus node generates the dominant bus state.
Therefore, for the CAN bus line, a medium must be chosen that is able to transmit the two
possible bit states (dominant and recessive). One of the most common and cheapest
ways is to use a twisted wire pair. The bus lines are then called "CAN_H" and "CAN_L"
and may be connected directly to the nodes or via a connector. There's no standard
defined by CAN regarding the connector to be used. The twisted wire pair is terminated by
terminating resistors at each end of the bus line. The maximum bus speed is 1 MBaud,
which can be achieved with a bus length of up to 40 m. For bus lengths longer than 40 m
the bus speed must be reduced (a 1000 m bus can be realised with a 40 KBaud bus
speed). For a bus length above 1000 m special drivers should be used. At least 30 nodes
may be connected without additional equipment. Due to the differential nature of
transmission CAN is insensitive to EMI, because both bus lines are affected in the same
way which leaves the differential signal unaffected. The bus lines can also be shielded to
reduce the electromagnetic emission of the bus itself, especially at high baudrates.

The binary data is coded corresponding to the NRZ code (Non-Return-to-Zero; low level =
dominant state; high level = recessive state). To ensure exact synchronization of all bus
nodes bit stuffing is used. This means that during the transmission of a message a
maximum of five consecutive bits may have the same polarity. Whenever five consecutive
bits of the same polarity have been transmitted the transmitter will insert one additional bit
of the opposite polarity into the bit stream before transmitting further bits. The receiver
also checks the number of bits with the same polarity and removes the stuff bits from the
bit stream (= destuffing).



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 7 of 63 AP2900  06.97

2.2 Addressing and Bus Arbitration

In the CAN protocol it is not bus nodes that are addressed, but the address information is
contained in the messages that are transmitted. This is done via an identifier (part of each
message) which identifies the message content (e.g. engine speed, oil temperature etc.)
The identifier additionally indicates the priority of the message. The lower the binary value
of the identifier the higher is the priority of the message.

For bus arbitration, CSMA/CD with NDA is used (Carrier Sense Multiple Access / Collision
Detection with Non-Destructive Arbitration). If bus node A wants to transmit a message
across the network, it at first checks that the bus is in the idle state ("Carrier Sense") i.e.
no node is currently transmitting. If this is the case (and no other node wishes to start a
transmission at the same moment) node A becomes the bus master and sends its
message. All other nodes switch to receive mode during the first transmitted bit (Start Of
Frame bit). After correct reception of the message (which is acknowledged by each node)
each bus node checks the message identifier and stores the message, if required.
Otherwise, the message is discarded.

If two or more bus nodes start their transmission at the same time ("Multiple Access"),
collision of the messages is avoided by bitwise arbitration ("Collision Detection / Non-
Destructive Arbitration" together with the "Wired-AND" mechanism, "dominant" bits
override "recessive" bits). Each node sends the bits of its message identifier (MSB first)
and monitors the bus level. A node that sends a recessive identifier bit but reads back a
dominant one loses bus arbitration and switches to receive mode. This condition occurs
when the message identifier of a competing node has a lower binary value (dominant
state = logic 0) and therefore the competing node is sending a message with a higher
priority. In this way, the bus node with the highest priority message wins arbitration
without losing time by having to repeat the message. All other nodes automatically try to
repeat their transmission once the bus returns to the idle state. It is not permitted for
different nodes to send messages with the same identifier as arbitration could fail leading
to collisions and errors.

The original CAN specifications (Versions 1.0, 1.2 and 2.0A) defined the message
identifier as having a length of 11 bits giving a possible 2048 message identifiers. The
specification has since been updated (to version 2.0B) to remove this possible limitation.
CAN specification Version 2.0B allows message identifier lengths of 11 and/or 29 bits to
be used (an identifier length of 29 bits allows over 536 Million message identifiers).
Version 2.0B CAN is often referred to as "Extended CAN", the versions below (1.0, 1.2
and 2.0A) being referred to as "Standard CAN" (see section 2.6.1 for further details).



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 8 of 63 AP2900  06.97

2.3 The different CAN Frames and their Formats

2.3.1 Data Frame

2.3.1.1 Standard CAN Data Frame

Inter Frame Space

1 11 4 0...64 15 7 31 1 1 1 1 1

Standard Data Frame

Bus Idle

Intermission

End of Frame

ACK Delimiter

ACK Slot

CRC Delimiter

Data Field

Data Length Code

Identifier Field
Start of Frame

} Control Field

CRC Sequence

}
} CRC Field

} Arbitration Field

(reserved (D))

IDE Bit (D)

RTR Bit (D)

Acknowledge
Field

recessive Level   

dominant Level    

Figure 2.3-1:
Standard CAN Data Frame

A "Data Frame" is generated by a node when the node wishes to transmit data. The
Standard CAN Data Frame is shown in figure 2.3-1. In common with all other frames, the
frame begins with a Start Of Frame bit (SOF = dominant state) for hard synchronization of
all nodes.

The SOF is followed by the Arbitration Field consisting of 12 bits, the 11-bit Identifier
(reflecting the contents and priority of the message) and the RTR bit (Remote
Transmission Request bit). The RTR bit is used to distinguish a Data Frame (RTR =
dominant) from a Remote Frame (see section 2.3.2).

The next field is the Control Field, consisting of 6 bits. The first bit of this field is called the
IDE bit (Identifier Extension) and is at dominant state to specify that the frame is a
Standard Frame. The following bit is reserved and defined as a dominant bit. The
remaining 4 bits of the Control Field are the Data Length Code (DLC) and specify the
number of bytes of data contained in the message (0 - 8 bytes).



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 9 of 63 AP2900  06.97

The data being sent follows in the Data Field which is of the length defined by the DLC
above (0, 8, 16, ...., 56 or 64 bits).

The Cyclic Redundancy Field (CRC) follows and is used to detect possible transmission
errors. The CRC Field consists of a 15 bit CRC sequence, completed by the recessive
CRC Delimiter bit.

The final field is the Acknowledge Field. During the ACK Slot bit the transmitting node
sends out a recessive bit. Any node that has received an error free frame acknowledges
the correct reception of the frame by sending back a dominant bit  (regardless of whether
the node is configured to accept that specific message or not). From this it can be seen
that CAN belongs to the "in-bit-response" group of protocols. The recessive Acknowledge
Delimiter completes the Acknowledge Slot and may not be overwritten by a dominant bit.

Seven recessive bits (End of Frame) end the Data Frame. Between any two frames the
bus must remain in the recessive state for at least a further 3 bit times (called
Intermission). If, following the frame, no nodes wish to transmit then the bus stays in the
recessive state (Bus Idle).

2.3.1.1 Extended CAN Data Frame

Inter Frame Space

1 11 4 0...64 15 7 31 1 1 1 1

Bus Idle

Intermission

End of Frame

Data Field

Data Length Code

Start of Frame

18

Extended Data Frame

}

ACK Delimiter

ACK Slot
CRC Delimiter

CRC Sequence

}
} CRC Field

21

SRR Bit (R)

(2 reserved (D))
RTR Bit (D)

Identifier

IDE Bit (R)

Extended Identifier }
Control Field
(plus IDE Bit)

Acknowledge
Field

Arbitration Field
(without IDE Bit)

recessive Level    

dominant Level  

Figure 2.3-2:
Extended CAN Data Frame



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 10 of 63 AP2900  06.97

The Extended CAN Data Frame is shown in figure 2.3-2.

It should be noted above, that to enable standard and extended frames to be sent across
a shared network it is necessary to split the 29 bit extended message identifier into 11bit
(most significant) and 18 bit (least significant) sections. This split ensures that the
Identifier Extension bit (IDE) can remain at the same bit position in both standard and
extended frames (see below).

In the Extended CAN Data Frame the Start Of Frame bit (SOF) is followed by the
Arbitration Field consisting of 32 bits. The first 11 bits are the 11 most significant bits of
the 29-bit Identifier ("Base-ID"). These 11 bits are followed by the Substitute Remote
Request bit (SRR) which is transmitted as recessive. The SRR is followed by the IDE bit
which is recessive to denote that the frame is an Extended CAN frame. It should be noted
from this, that if arbitration remains unresolved after transmission of the first 11 bits of the
identifier, and one of the nodes involved in arbitration is sending a Standard CAN frame
(11 bit identifier), then the Standard CAN frame will win arbitration due to the assertion of
a dominant IDE bit. Further to this the SRR bit in an Extended CAN frame must be
recessive to allow the assertion of a dominant RTR bit by a node that is sending a
Standard CAN Remote Frame (see section 2.3.2.1). The SRR and IDE bits are followed
by the remaining 18 bits of the identifier ("ID-Extension") and the Remote Transmission
Request bit (again RTR = dominant for a Data Frame).

The next field is the Control Field, consisting of 6 bits. The first 2 bits of this field are
reserved and are at dominant state. The remaining 4 bits of the Control Field are the Data
Length Code (DLC) and specify the number of data bytes (as for the Standard Data
Frame).

The remaining portion of the frame (Data Field, CRC Field, Acknowledge Field, End Of
Frame and Intermission) is constructed in the same way as for a Standard Data Frame.



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 11 of 63 AP2900  06.97

2.3.2 Remote Frame

2.3.2.1 Standard CAN Remote Frame

Normally data transmission is performed on an autonomous basis with the data source
node (e.g. a sensor) sending out a Data Frame. It is also possible, however, for a
destination node (or nodes) to request the data from the source. For this purpose the
destination node sends a "Remote Frame" with an identifier that matches the identifier of
the required Data Frame. The appropriate data source node will then send a Data Frame
as a response to this remote request.

There are 2 differences between a Remote Frame and a Data Frame. Firstly the RTR-bit
is at the recessive state and secondly there is no Data Field. In the very unlikely event of
a Data Frame and a Remote Frame with the same identifier being transmitted at the same
time, the Data Frame wins arbitration due to the dominant RTR bit following the identifier.
In this way, the node that transmitted the Remote Frame receives the desired data
immediately.

The format of a Standard Remote Frame is shown in figure 2.3-3 below.

Inter Frame Space

1 11 4 15 7 31 1 1 1 1 1

Bus Idle
Intermission

End of Frame

ACK Delimiter

ACK Slot

CRC Delimiter

Data Length Code

Identifier Field
Start of Frame

} Control Field

CRC Sequence

}
} CRC Field

}

(reserved (D))

IDE Bit (D)

Acknowledge
Field

Standard Remote Frame

RTR Bit (R)

dominant Level   

recessive Level   

Arbitration Field   

Figure 2.3-3:
Standard CAN Remote Frame



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 12 of 63 AP2900  06.97

2.3.2.2 Extended CAN Remote Frame

The format of an Extended CAN Remote Frame is shown in figure 2.3-4 below.

Inter Frame Space

1 11 4 15 7 31 1 1 1 1

Bus Idle

Intermission

End of Frame

Data Length Code

Start of Frame

18

}

ACK Delimiter

ACK Slot

CRC Delimiter

CRC Sequence

}
} CRC Field

21

SRR Bit (R)

(2 reserved (D))

Identifier

IDE Bit (R)

Extended Identifier }
Control Field
(plus IDE Bit)

Acknowledge
Field

Arbitration Field
(without IDE Bit)

Extended Remote Frame

RTR Bit (R)

dominant Level   

recessive Level   

Figure 2.3-4:
Extended CAN Remote Frame



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 13 of 63 AP2900  06.97

2.3.3 Error Frames, Overload Frame, Interframe Space

2.3.3.1 Error Frames

An Error Frame is generated by any node that detects a bus error. An error frame consists
of 2 fields, an Error Flag field followed by an Error Delimiter field. The Error Delimiter
consists of 8 recessive bits and allows the bus nodes to restart bus communications
cleanly after an error. There are, however, two forms of Error Flag fields. The form of the
Error Flag field depends on the “error status” of the node that detects the error (see
section 2.5 for details of “error status”).

If an “error-active” node detects a bus error then the node interrupts transmission of the
current message by generating an “active error flag”. The “active error flag” is composed
of six consecutive dominant bits. This bit sequence actively violates the bit stuffing rule.
All other stations recognize the resulting bit stuffing error and in turn  generate Error
Frames themselves. The Error Flag field therefore consists of  between six and twelve
consecutive dominant bits (generated by one or more nodes). The Error Delimiter field
completes the Error Frame. After completion of the Error Frame bus activity returns to
normal and the interrupted node attempts to resend the aborted message.

if an “error passive” node detects a bus error then the node transmits an “error passive
flag” followed, again, by the Error Delimiter field. The “error passive flag” consists of six
consequtive recessive bits, and therefore the Error Frame (for an “error passive” node)
consists of 14 recessive bits (i.e. no dominant bits). From this it follows that, unless the
bus error is detected by the node that is actually transmitting (i.e. is the bus master), the
transmission of an Error Frame by an “error passive” node will not affect any other node
on the network. If the bus master node generates an “error passive flag” then this may
cause other nodes to generate error frames due to the resulting bit stuffing violation. After
transmission of an Error Frame an “error passive” node must wait for 6 consecutive
recessive bits on the bus before attempting to rejoin bus communications.

2.3.3.2 Overload Frame

An Overload Frame has the same format as an “active” Error Frame (i.e. that generated
by an “error active” node). An Overload Frame, however can only be generated during
Interframe Space. This is the way then an Overload Frame can be differentiated from an
Error Frame (an Error Frame is sent during the transmission of a message). The Overload
Frame consists of 2 fields, an Overload Flag followed by an Overload Delimiter. The
Overload Flag consists of six dominant bits followed by Overload Flags generated by
other nodes (as for “active error flag”, again giving a maximum of twelve dominant bits).
The Overload Delimiter consists of eight recessive bits. An Overload Frame can be
generated by a node as a result of 2 conditions, a) if the node detects a dominant bit
during Interframe Space (illegal see section 2.5), or b) if due to internal conditions, the
node is not yet able to start reception of the next message. A node may generate a
maximum of 2 sequential Overload Frames to delay the start of the next message.



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 14 of 63 AP2900  06.97

2.3.3.3 Interframe Space

Interframe Space separates a preceeding frame (of whatever type) from a following Data
or Remote Frame. Interframe space is composed of at least 3 recessive bits, these bits
are termed the Intermission. This time is provided to allow nodes time for internal
processing before the start of the next message frame. After the Intermission, the bus line
remains in the recessive state (Bus Idle) until the next transmission starts.

2.4 The Nominal Bit Time

One bit cell (i.e. one high or low pulse of the NRZ code) is constructed from four
segments. Each segment is in turn constructed from an integer multiple of Time Quanta.
The Time Quantum is the smallest discrete timing resolution used by a CAN node. A bit
time, and therefore by definition also the bit rate, is selected by programming the Bit
Timing Logic (BTL) to select the width of the Time Quanta and the number of Time
Quanta in the various segments. The nominal bit time with its segments (according to
CAN Spec ISO11898, 1993) is shown in figure 2.4-1.

Propagation
Segment

(PROP_SEG)

Synchronisation
Segment

(SYNC_SEG)

Nominal bit time

Sample Point

Phase Buffer
Segment 1

(PHASE_SEG1)

Phase Buffer
Segment 2

(PHASE_SEG2)

Figure 2.4-1:
Partition of bit time

The SYNC_SEG (Synchronisation Segment) is used to synchronise the various bus
nodes. If there is a bit state change between the previous bit and the current bit then the
bus state change is expected to occur within this segment. The length of this segment is
always 1 Time Quantum (1 BTL cycle).

The PROP_SEG (Propagation Segment) is used to compensate for signal delays across
the network. These delays are caused by signal propagation delay on the bus line and
through the electronic interface circuits of the bus nodes. PROP_SEG may be 1, 2, 3, ...,
8 or more Time Quanta long. For many CAN module implementations the PROP_SEG
and PHASE_SEG1 segments are combined for ease of programming.

The PHASE_SEG1 and PHASE_SEG2 segments are used to compensate for edge phase
errors. These segments may be lengthened or shortened by resynchronization.
PHASE_SEG1 may be 1, 2, 3, ..., 8 or more Time Quanta long. PHASE_SEG2 is the
maximum of PHASE_SEG1 and the information processing time, which is the time
segment starting with the sample point reserved for calculation of the subsequent bit level
and is less than or equal to two Time Quanta long. The sample point is the point of time at



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 15 of 63 AP2900  06.97

which the bus level is read and interpreted as the value of that respective bit. Its location
is at the end of PHASE_SEG1.

The total number of Time Quanta in a bit time must be between 8 and 25.

As a result of resynchronization, PHASE_SEG1 may be lengthened or PHASE_SEG2
may be shortened. The amount of lengthening or shortening the phase buffer segments
has an upper limit given by the resynchronization jump width. The resynchronization jump
width may be between 1 and 4 Time Quanta, but it may not be longer than PHASE_SEG1.

2.5 Error Detection and Error Handling

The CAN protocol provides sophisticated error detection mechanisms. The following
errors can be detected:

• • Cyclic Redundancy Check (CRC) Error:

With the Cyclic Redundancy Check the transmitter calculates special check bits for the bit
sequence from the start of a frame until the end of the Data Field. This CRC sequence is
transmitted in the CRC Field. The receiving node also calculates the CRC sequence
using the same formula and performs a comparison to the received sequence. If a
mismatch is detected, a CRC error has occured and an Error Frame is generated. The
message is repeated.

• • Acknowledge Error:

In the Acknowledge Field of a message the transmitter checks if the Acknowledge Slot
(which it has sent out as a recessive bit) contains a dominant bit. If not, no other node has
received the frame correctly, an Acknowledge Error has occured and the message has to
be repeated. No Error Frame is generated, though.

• • Form Error:

If a transmitter detects a dominant bit in one of the four segments End of Frame,
Interframe Space, Acknowledge Delimiter or CRC Delimiter then a Form Error has
occured and an Error Frame is generated. The message is repeated.

• • Bit Error:

A Bit Error occurs if  a) a transmitter sends a dominant bit and detects a recessive bit or
b) if it sends a recessive bit and detects a dominant bit when monitoring the actual bus
level and comparing it to the just transmitted bit. In case b) no error occurs during the
Arbitration Field and the Acknowledge Slot.

• • Stuff Error:

If between Start of Frame and CRC Delimiter 6 consecutive bits with the same polarity are
detected, the bit stuffing rule has been violated. A stuff error occurs and an Error Frame is
generated. The message is repeated.



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 16 of 63 AP2900  06.97

Detected errors are made public to all other nodes via Error Frames. The transmission of
the erroneous message is aborted and the frame is repeated as soon as possible.
Furthermore, each CAN node is in one of the three error states "error active", "error
passive" oder "bus off" according to the value of the internal error counters. The error-
active state is the usual state where the bus node can transmit messages and active Error
Frames (made of dominant bits) without any restrictions. In the error-passive state,
messages and passive Error Frames (made of recessive bits) may be transmitted. The
bus-off state makes it temporarily impossible for the station to participate in the bus
communication. During this state, messages can neither be received nor transmitted.

2.6 Different CAN Implementations

2.6.1 Standard CAN, Extended CAN

Those Data Frames and Remote Frames, which only contain the 11-bit identifier, are
called Standard Frames according to CAN specification V2.0 part A. With these frames,
211 (=2048) different messages can be identified (identifiers 0-2047). However, the 16
messages with the lowest priority (2032-2047) are reserved. Extended Frames according
to CAN specification V2.0 part B own a 29-bit identifier. As already mentioned, this 29-bit
identifier is made up of the 11-bit identifier ("Base ID") and the 18-bit Extended Identifier
("ID Extension"). So 229 different identifiers are possible.

CAN modules specified after CAN V2.0 part A are only able to transmit and receive
Standard Frames according to the Standard CAN protocol. Messages using the 29-bit
identifier cause errors. If a device is specified after CAN V2.0 part B, there’s one more
distinction. Modules named "Part B Passive" can transmit and receive Standard Frames
but tolerate Extended Frames without generating Error Frames. "Part B Active" devices
are able to transmit and receive both Standard and Extended Frames.

2.6.2 Basic CAN, Full CAN

There is one more CAN characteristic concerning the interface between the CAN module
and the host CPU, dividing CAN chips into "Basic CAN" and "Full CAN" devices. This has
nothing to do with the used protocol though (Standard or Extended CAN), which makes it
possible to use both Basic and Full CAN devices in the same network.

In the Basic CAN devices, only basic functions of the protocol are implemented in
hardware, e.g. the generation and the check of the bit steam. The decision, if a received
message has to be stored or not (acceptance filtering) and the whole message
management has to be done by software, i.e. by the host CPU. Mostly the CAN chip also
only provides one transmit buffer and one or two receive buffers. So the host CPU load is
quite high using Basic CAN modules, therefore these devices should only be used at low
baudrates and low bus loads with only a few different messages. The advantages of Basic
CAN are the small chip size leading to low costs of these devices.

Full CAN devices do the whole bus protocol in hardware including the acceptance filtering
and the message management. They contain several so called message objects which
handle the identifier, the data, the direction (receive or transmit) and the information
Standard CAN / Extended CAN. During the initialisation of the device, the host CPU



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 17 of 63 AP2900  06.97

defines which messages are to be sent and which are to be received. The host CPU is
informed by interrupt if the identifier of a received message matches with one of the
programmed (receive-) message objects. In this way, the CPU load is strongly reduced.
Using Full CAN devices, high baudrates and high bus loads with many messages can be
handled. These chips are more expensive than the Basic CAN devices, though.

Many Full CAN chips provide a "Basic-CAN-Feature": One of their message objects can
be programmed in a way that every message is stored there that does not match with one
of the other message objects. This can be very helpful in a number of applications.



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 18 of 63 AP2900  06.97

3. The Siemens CAN Devices C167CR, C515C and SAE 81C90/91

3.1 The Microcontroller Families C500 and C166 at a Glance

The history of the 8-bit microcontrollers from Siemens is founded on 8051-compatible
derivatives like the SAB 80C515 or the SAB 80C517. The improvement of these
controllers lead to the C500 family whose C500 core is still fully compatible to the old
8051 core but provides more performance and a more flexible design methodology for
further integration. An actual high-performance member of the C500 family is the C515C.
It is based on the well-known SAB 80C515A, but has some additional features like an
SPI-compatible, synchronous serial interface (SSC) and a CAN module which will be
described in detail in section 3.2.

To meet the requirements of today’s and future embedded control applications Siemens
developed the SAB 80C166 in 1990 being the first member of the 16-bit microcontroller
family C166. The controllers own a registerbank-oriented CPU with a four-stage pipeline
being able to process most of the instructions in just one machine cycle of 80 ns @ 25
MHz CPU clock. The freely programmable interrupt system has response times of
typically 400 ns and can handle a large number of independent internal and external
interrupt sources at 16 priority levels. The family members SAB 80C166, C167, C165 and
C163 are equipped with a well-balanced mix of modular, autonomous peripherals like a
10-bit ADC with up to 16 channels, Capture/Compare units, serial interfaces, a PWM unit,
complex timer units and also a CAN module. The implemented XBUS makes it easy to
extend the standard derivatives by further application specific peripheral functions. The
controllers contain up to 4 Kbytes internal RAM and up to 128 Kbytes ROM or Flash-
EPROM, respectively. The whole C166 architecture is made for fast instruction execution
and minimum response time to external events. This combination, however, provides
highest real-time performance.



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 19 of 63 AP2900  06.97

3.2 The CAN Module on the C167CR / C515C

3.2.1 The Functional Blocks of the CAN Module

The CAN modules on the C167CR and the C515C are fully compatible concerning the
CAN functionality. There are only differences in the interface to the CPU, the module
clock generation, the internal registers (8 bit wide on the C515C, 16-bit wide on the
C167CR), and the interrupt functionality. A block diagram of the CAN module is shown in
figure 3.2-1 (connected to the C167CR here).

XCS#

RD#

ADDRESS [7:0]

DATA [15:0]

XINTR0#

WR#

XCLK

XRST

CAN_TxD

CAN_RxD

BHE#

XBUS
Interface

CAN
Controller

Figure 3.2-1:
Block Diagram of the CAN module (connected to the C167CR here)

The CAN module is made of two major blocks. One of them represents the interface to the
CPU.

In the C167CR, the CAN module is connected to the bus controller (and therefore to the
CPU) via the XBUS. From a user’s point of view, this XBUS can be regarded as an
internal representation of the external bus. Connecting the CAN module to the XBUS in
16-bit demultiplexed bus mode offers the fastest possible accesses. All registers of the
CAN module are organized as 16-bit registers, located on word addresses. However, all
registers may be accessed bytewise in order to select special actions without affecting
other mechanisms. These registers reside in a special CAN address area of 256 bytes,
which is mapped into segment 0 and uses addresses EF00h through EFFFh.

In the C515C, the CAN module is connected to the internal bus. Again, the registers are
mapped into a special address area of 256 bytes using addresses F700h through F7FFh.
The registers can be accessed with MOVX-instructions. An access to this special memory
space requires the modification of the XPAGE register to the value F7h. Furthermore, the
bits XMAP0 and XMAP1 in the SYSCON register must be set to "0".



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 20 of 63 AP2900  06.97

The second block of the CAN module on the C167CR and the C515C is the CAN
controller itself, which is derived from the stand-alone component AN 82527. The CAN
controller provides all resources that are required to run the Standard CAN protocol (11-
bit identifiers) as well as the Extended CAN protocol (29-bit identifiers). It provides a
sophisticated object layer to relieve the CPU of as much overhead as possible when
controlling many different message objects (up to 15). This includes bus arbitration,
resending of garbled messages, error handling, interrupt generation, etc. In order to
implement the physical layer, external CAN transceiver components have to be connected
to the C167CR / C515C.

The CAN controller combines several functional blocks (see figure 3.2-2) that work in
parallel and contribute to the controller’s performance. These units and the functions they
provide are described below.

• The Transmit / Receive Shift Register holds the destuffed bit stream from the bus line to
allow the parallel access to the whole data or Remote Frame for the acceptance match
test and the parallel transfer of the frame to and from the Intelligent Memory.

• The Bit Stream Processor (BSP) is a sequencer controlling the sequential data stream
between the Tx/Rx Shift Register, the CRC Register, and the bus line. The BSP also
controls the Error Management Logic (EML) and the parallel data stream between the
Tx/Rx Shift Register and the Intelligent Memory such that the processes of reception,
arbitration, transmission, and error signalling are performed according to the CAN
protocol. Note that the automatic retransmission of messages which have been
corrupted by noise or other external error conditions on the bus line is handled by the
BSP.

• The Cyclic Redundancy Check Register generates the Cyclic Redundancy Check
(CRC) code to be transmitted after the data bytes and checks the CRC code of
incoming messages. This is done by dividing the data stream by the code generator
polynomial.

• The Error Management Logic (EML) is responsible for the fault confinement of the CAN
device. Its counters, the Receive Error Counter and the Transmit Error Counter, are
incremented and decremented by commands from the Bit Stream Processor. According
to the values of the error counters, the CAN controller is set into the states error active,
error passive or busoff.

• The CAN controller is error active, if both error counters are below the error passive
limit of 128. It is error passive, if at least one of the error counters equals or exceeds
128. It goes busoff, if the Transmit Error Counter equals or exceeds the busoff limit
of 256. The device remains in this state, until the busoff recovery sequence is finished.
Additionally, there is the bit EWRN in the Status Register, which is set, if at least one of
the error counters equals or exceeds the error warning limit of 96. EWRN is reset if
both error counters are less than the error warning limit.



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 21 of 63 AP2900  06.97

• The Bit Timing Logic (BTL) monitors the busline input CAN_RxD and handles the
busline related bit timing according to the CAN protocol. The BTL synchronises on a
recessive to dominant busline transition at Start of Frame (hard synchronisation) and
on any further recessive to dominant busline transition, if the CAN controller itself does
not transmit a dominant bit (resynchronisation). The BTL also provides programmable
time segments to compensate for the propagation delay time and for phase shifts and
to define the position of the Sample Point in the bit time. The programming of the BTL
depends on the baudrate and on external physical delay times.

 
• The Intelligent Memory (CAM/RAM Array) provides storage for up to 15 message

objects of maximum 8 data bytes length. Each of these objects has a unique identifier
and its own set of control and status bits. After the initial configuration, the Intelligent
Memory can handle the reception and transmission of data without further CPU actions.

to internal Bus

Error

Clocks
Messages

Control

Handlers

Messages

( to all )

CRC

BTL - Configuration

TX/RX Shift Register

Timing
Generator

Register

Intelligent

Memory

Interrupt

Status
Register

Transmit Receive

Status +
Control

Bit
Timing
Logic

PinPin

Gen./Check

Bit
Stream

Processor

Management
Logic

Figure 3.2-2:
Block Diagram of the CAN Controller on the C167CR / C515C



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 22 of 63 AP2900  06.97

3.2.2 Control Registers of the CAN Controller

All registers reside in the already mentioned 256-byte wide CAN address areas (shown in
figure 3.2-3) together with the message objects. The most important registers are now
described.

The Control Register and the Status Register contain important status- and control bits
e.g. used for initialisation and interrupt control. The cause for a pending interrupt can be
read from the Interrupt-Register. In the Bit-Timing-Register, the desired baudrate on the
CAN bus and the length of the time segments described in section 2.4 are defined.

Message Object 1

General Registers

CAN Address Area General Registers

F700H

F710H

Message Object 2
F720H

Message Object 3
F730H

Message Object 4
F740H

Message Object 5
F750H

Message Object 6
F760H

Message Object 7
F770H

Message Object 8
F780H

Message Object 9
F790H

Message Object 10
F7A0H

Message Object 11
F7B0H

Message Object 12
F7C0H

Message Object 13
F7D0H

Message Object 14
F7E0H

Message Object 15
F7F0H

Status Register

Control Register

Interupt Register

Global Mask Short

F700H

reserved

Bit Timing Low
Register

Low Register

F701H

F702H

F703H

F704H

F705H

F706H

F707H

F708H

F709H

F70AH

F70BH

F70CH

F70DH

F70EH

F70FH

Bit Timing High
Register

Global Mask Short
High Register

Upper Global Mask Long
Low Register

Upper Global Mask Long
High Register

Lower Global Mask Long
Low Register

Lower Global Mask Long
High Register

Upper Mask of Last
Message Low Register

Upper Mask of Last
Message High Register

Lower Mask of Last
Message Low Register

Lower Mask of Last
Message High Register

Figure 3.2-3a:
CAN addressing area on the C515C



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 23 of 63 AP2900  06.97

EF00H

EF02H

EF04H

EF06H

EF08H

EF0CH

EF00H

EF10H

EF20H

EF30H

EF40H

EF50H

EF60H

EF70H

EF80H

EF90H

EFA0H

EFB0H

EFC0H

EFD0H

EFE0H

EFF0H Message Object 15

Message Object 14

Message Object 13

Message Object 12

Message Object 11

Message Object 10

Message Object 9

Message Object 8

Message Object 7

Message Object 6

Message Object 5

Message Object 4

Message Object 3

Message Object 2

Message Object 1

General Registers Control / Status
Register

Interrupt
Register

Bit Timing
Register

Global Mask
Short

Global Mask
Long

Mask of
Last Message

CAN Address Area General Registers

Figure 3.2-3b:
CAN addressing area on the C167CR

There are three mask registers in the CAN controller, called "Global Mask Short", "Global
Mask Long" and "Mask of Last Message". Incoming frames are masked with their
appropriate global mask. Therefore incoming Standard Frames are masked with the
standard 11-bit mask in Global Mask Short, while incoming Extended Frames are masked
with the extended 29-bit identifier in Global Mask Long. A bit in the mask registers holding
a "0" means "don't care", i.e. the respective bit position of the message's identifier is not
relevant during the acceptance filtering. In this way a message object accepts not only
one specific message but all messages only differing in the previously masked bits. The
last message object (MO 15) is used for the "Basic CAN" feature. It has an additional
individually programmable acceptance mask for the complete Arbitration Field called
Mask of Last Message which is ANDed with the global mask that corresponds to the
incoming message. This allows classes of messages to be especially received in this
message object by masking some (or all) bits of the identifier.



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 24 of 63 AP2900  06.97

3.2.3 The Message Objects

The CAN controller provides storage for up to 15 message objects of maximum 8 bytes
data length. Each of these objects has a unique identifier and its own set of control and
status bits (see figure 3.2-4a and 3.2-4b). Each object can be configured with its direction
as either transmit or receive, except the last message which is only a receive buffer with a
special mask register.

An object with its direction set as transmit can be configured to be automatically sent
whenever a Remote Frame with a matching identifier (taking into account the respective
global mask register) is received over the CAN bus. By requesting the transmission of a
message with the direction set as receive, a Remote Frame can be sent to request that
the appropriate object be sent by some other node. Each object has separate transmit and
receive interrupts and status bits, allowing the CPU full flexibility in detecting when a
Remote/Data Frame has been sent or received.

For general purpose two masks for acceptance filtering can be programmed, one for
identifiers of 11 bits and one for identifiers of 29 bits. However the CPU must configure bit
XTD (Normal or Extended Frame Identifier) for each valid message to determine whether
a standard or extended frame will be accepted.

The last message object has its own programmable mask for acceptance filtering,
allowing a large number of infrequent objects to be handled by the system.

Message Control High

Upper Arbitration Low

+0

+1

+2

+3

+4

+5

+6

Message Object

Reserved

Upper Arbitration High

Lower Arbitration Low

Lower Arbitration High

Message Control Low

Message Configuration

Data Byte 0

Data Byte 1

Data Byte 2

Data Byte 3

Data Byte 4

Data Byte 5

Data Byte 6

Data Byte 7

+7

+8

+9

+10

+1
1+12

+13

+14

+15

Start Address

Figure 3.2-4a:
Message Objects in the C515C



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 25 of 63 AP2900  06.97

Message Control

Arbitration

Message Config.

+0

+2

+4

+6

+6

+8

+10

+12

+14

Object Start Address

Data 7...0

Data0

Msg. Config.

Reserved

Figure 3.2-4b:
Message Objects in the C167CR

3.2.4 Initialization of the CAN Controller

To initialize the CAN controller, two bits in the control register (INIT and CCE) have to be
set first. Then the register concerning the bit timing and the global mask registers must be
configured. Afterwards each message object is to be initialized or is to be declared as not
valid if it is not needed. The procedure is finished when bits INIT and CCE in the control
register are reset. Now the CAN controller synchronizes to the data transfer on the CAN
bus by waiting for 11 consecutive recessive bits. Finally it can participate in the CAN bus
communication. Please also read section 5.4.1 for more information about the initialization
of this device.

Further information about the CAN module can be found in section 5 or in the Siemens
literature "Description of the On-Chip CAN-Module" and the manuals of the C167CR and
the C515C.



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 26 of 63 AP2900  06.97

3.3 The Stand-Alone Full-CAN Controller SAE 81C90/91

3.3.1 Important Features of the SAE 81C90/91

The CAN controllers SAE 81C90 (P-LCC-44-package, with two 8-bit I/O-Ports, and
SAE 81C91 (P-LCC-28-package; without I/O-Ports) can be operated with up to 20 MHz.
They support the CAN spezification V2.0A (B passive), i.e. the controllers can handle
messages with the 11-bit standard identifier. Frames with the 29-bit extended identifier
are not stored, but tolerated. Via a flexible, programmable interface the connection to
different implementations of the physical layer (ISO/OSI layer 1) is possible. The
connection to the host controller can be set up either in parallel via a multiplexed 8-bit
address-/ data bus compatible to Siemens 8- and 16-bit microcontrollers or via a fast
synchronous serial interface (up to 5 MBit/s). With the 8 bit wide registers all functions of
the device are controlled from the host CPU. There are software drivers available for the
SAE 81C90/91 from different CAN tool suppliers.

The SAE 81C90/91 can handle 16 CAN message objects. Each of these comprises eight
data bytes and two descriptor bytes containing important information about the
configuration of the relevant object. Message objects 0-7 are additionally equipped with
two time-stamp bytes, from which the currency of the data in the data bytes can be
inferred. For message object 0, a so called "monitor mode" is available with which this
message object can be configured to receive all messages that are not covered by other
memory locations. This device, too, thus offers basic CAN functionality.



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 27 of 63 AP2900  06.97

3.3.2 Functional blocks of the SAE 81C90/91

The functional blocks of the SAE 81C90/91 are shown in figure 3.3-1.

T ime
S tamp

T ransmit
Check

CPU
Interface

L ogic

Message-Memory

CAM-Array R AM
Parallel

Interface
PI

CS #

RD#

WR#

AL E

INT #

MS

AD 0 ...
AD 7

B it S tream
Processor

E rror 
Management L ogic

I/O Port P0

I/O Por t P1Clock
Generator

Oscillator

X1

X2

CL K OUT

RE S #

output driver logic input logic

T X0 T X1 RX0 RX1

B it T iming
L ogic

Serial
Interface

S I

8

8

8

T ransceiver Control L ogic

Figure 3.3-1:
Block Diagram of the SAE 81C90/91 (I/O Ports only available for SAE 81C90)

The Message Memory contains the 16 message objects. The SAE 81C90/91 as well owns
a Bit-Stream-Prozessor (BSP), which controls the complete CAN protocol, handles the
different CAN frames (Data Frame, Remote Frame), and performs the frame check. The
BSP reports errors to the Error Management Logic which returns information about the
error rate back to the BSP and to the CPU Interface Logic (CIL). The CIL controls the
accesses of the host CPU via the parallel or serial interface and interprets the included
instructions.

The task of the Bit Timing Logic is again the synchronization to the bit stream and the bus
timing. The Transceiver Control Logic (TCL) contains the output driver and the input
comparator. The Transmit Check Unit is a special feature of the SAE 81C90/91. When
transmitting a message, each bit is read back via the normal receive path and compared
with the bit just sent. If a mismatch occurs, the Transmit Check Error Counter (TCEC) is



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 28 of 63 AP2900  06.97

incremented by one and the actual message is invalidated by an Error Frame. In this way
also the chip-internal conversion of the data stored in parallel to the serial bit stream
(which is not covered by the CAN protocol itself) is monitored. If the TCEC reaches 4, the
device enters the bus-off state.

3.3.3 The most important Control Registers of the SAE 81C90/91

Via the host CPU and the 8-bit control registers all functions of the SAE 81C90/91 are
controlled. The most important registers are described in the following section.

The register MOD contains the two bits IM and RES, which are necessary for the
initialization of the device, and some status bits. In the control register CTRL the Monitor
Mode of message object 1 and the Transmit Check Unit can be enabled. The interrupt
register INT shows occured interrupts which can be individually enabled / disabled in the
interrupt mask register IMSK. In the bit length registers BL1 and BL2 the bit timing
segments TSEG1, TSEG2 and SJW are configured. The desired baudrate is controlled
via the baudrate prescaler register BRPR. Different physical layers can be connected to
the SAE 81C90/91 by programming the output control register OC. The descriptor
registers are filled with the 11 bits of the respective identifier, the RTR bit (which
distinguishes between Data- and Remote Frames), and the data length code.

3.3.4 Initialization of the SAE 81C90/91 and Bus Access

Similar to the C167CR / C515C two special bits have to be set to be able to initialize the
device. These bits are IM and RES in the register MOD. Afterwards the registers
concerning the bit timing can be written and the message objects must be configured.
Resetting bits RES and IM ends the initialization phase and the controller can participate
in the CAN bus activities. Please also read section 5.5.1 for more information about the
initialization of this device.

The SAE 81C90/91 contains no implementation of the physical layer, which again
requires a CAN transceiver.

Further information about the SAE 81C90/91 Stand Alone Full CAN Controller can be
found in section 5 or in the corresponding Data Sheet.



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 29 of 63 AP2900  06.97

4. Examples for the Connection of Siemens Microcontrollers to CAN

4.1 Connecting the C167CR / C515C to CAN

Figure 4.1-1 shows the connection between the C167CR and the CAN bus. The CAN
module is connected to the outside world via two pins, CAN_RxD (P4.5) and CAN_TxD, of
port 4. CAN_RxD receives data from the physical layer of the CAN bus, while CAN_TxD
transfers data to the physical layer. The physical layer is not implemented in the CAN
module, so the C167CR is likewise connected via an external transceiver to the CAN bus
lines CAN_H and CAN_L. In this example, the CAN bus is a shielded, twisted wire pair
with termination resistors at both ends of the bus lines. If the transceiver has an input pin
for slope control or "stand-by", it can be driven via a port pin of the C167CR (pin P4.7 in
this case).

Notes:

• If the CAN module is used, port 4 may not be programmed to output all eight segment
address lines. A maximum of four segment address lines is possible in this case. The
address range that can be accessed via the address lines is then reduced to 1 MByte.

• P4.5 (CAN_RxD) has to be configured as input by the user. (If the CAN module is not
used, P4.5 can be used as general purpose I/O).

• In some versions / production steps of the C167CR, CAN_TxD is configured as output
by hardware and therefore cannot be used as general purpose I/O pin P4.6. Please
contact your distributor or your local Siemens office if you need further information
about this subject.

CAN-Bus
Transceiver

Receive

Transmit

CAN_H

CAN_L

90

91

CAN_L
Pa.b

Pc.d

C167CR

CAN_H    

R(opt)

(Standby)

Vref

n.c.

P4.7 92

CAN_RxD

CAN_TxD

P4.5

Connection
to the

Application

Figure 4.1-1:
Connection of the C167CR to CAN   



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 30 of 63 AP2900  06.97

Figure 4.1-2 shows the connection between the C515C and the CAN bus. This time the
CAN module is connected to the CAN transceiver via the port pins "RXDC" and "TXDC" of
port 4. For the control of a slope control or "stand-by" pin, portpin P4.5 was chosen in this
example.

CAN-Bus
Transceiver

Receive

Transmit

CAN_H

CAN_L

P4.5

P4.6

CAN_L
Pa.b

Pc.d

CAN_H    

R(opt)

(Standby)

Vref

n.c.

C515C

TXDC
(P4.6)

RXDC
(P4.7)

80

79

78P4.5

Figure 4.1-2:
Connection of a C515C to CAN   

Connection
to the

Application

4.2 Connecting the SAB 80C166 to CAN using the parallel interface of the 
SAE 81C90

Of course not all members of the C500- and C166 family own an integrated CAN module.
But also these controllers can be used in a Controller Area Network. In figure 4.2-1, the
connection between a SAB 80C166 and a SAE 81C90 (P-LCC 44, with I/O ports) is
shown. Both controllers are connected via the multiplexed 8-bit bus (address/data lines
AD0 to AD7, signals WR#, RD#, ALE). This parallel connection is selected by applying a
low logic level to pin MS (a high level would activate the serial interface). With the aid of
the remaining address lines AD8 to AD17, the chip-select signal for the CAN controller
(active low) can be generated via decoding logic, depending on the external memory
configuration. The SAB 80C166 can use the multiplexed 8-bit bus for the corresponding
memory range, and one of the other bus modes, for example the faster non-multiplexed
16-bit bus (with individual bus timing in each case), for the accesses to the remaining
address space.



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 31 of 63 AP2900  06.97

CAN-Bus
Transceiver

Receive

Transmit
CAN_H

CAN_L

CAN_L
25

23

MS

22

26

WR#
RD#
ALE

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7

INT#

RES#

CS#

XTAL1

VccGND

GND

40.000 MHz

SAE 81C90

36

35

34

42

43

44

 1

 2

 3

 4

 5

41

19

27

97

95

26

25

98

99

100

1

2

3

4

5

62

28

8

17

RSTOUT#

CLKOUT

(CC0IO)

WR#
RD#
ALE

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7

P2.0

AD8

A17

14 7

8 20

TX0

RX0

RX1

P00

n.c.TX1 24

Pa.b

Pc.d

SAB 80C166

10 X2

28

CAN_H 

R(opt)

Vref

n.c.

(Standby)
Connection

of the
Application

Address-
decoding-

logic
Figure 4.2-1:
Connection of a  SAB 80C166 to CAN
via the SAE 81C90 (parallel)

The SAE 81C90 obtains its defined reset via the RSTOUT# pin of the SAB 80C166. The
interrupt output INT# of the CAN controller is routed to a capture input of the host
controller (P2.0 in this case). Via this line, the CAN controller can report incoming
messages. A 40 MHz quartz oscillator feeds the SAB 80C166, whose CLKOUT pin (which
must be enabled in the SYSCON register) in turn supplies the CAN controller with 20 MHz
clock information.

Like the C167CR / C515C, the SAE 81C90 contains no implementation of the physical
layer and therefore a transceiver must be used. This driver module is connectd to the
SAE 81C90 via pins TX0 (Transmitter Output 0, set as a push/pull output by software
here) and RX0 (Comparator Input 0 / Digital input). Neither the second transmit pin TX1
nor the analog input RX1 is required here. RX1 is at 0V because the signal shall be
evaluated digitally. Two of the transceiver pins are again directly connected to the CAN_H
and CAN_L lines of the CAN bus. If the transceiver has a pin for slope control or standby,
this can be driven by a pin of the two 8-bit I/O ports of the SAE 81C90 (e.g. pin P00). The
application driven by the SAB 80C166, e.g . a robot controller, can now interchange data
with other nodes in the same Controller Area Network.

Note:  If a complete external CAN transceiver chip is used, the best way is to evaluate the
signal digitally as shown in this application note. But the SAE 81C90/91 also has an input
comparator implemented on-chip in case no such transceiver IC is used. However, if the
bus lines work according to the ISO specification, additional circuitry is necessary for the
interconnection of the input comparator to the bus lines.



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 32 of 63 AP2900  06.97

4.3 Connecting the C511 / C513 to CAN using the serial interface

of the SAE 81C 91

The 8-bit microcontrollers C511 / C513 are new low-cost members of the C500 family.
The SAE 81C90/91 is an obvious choice for using one of these devices in a Controller
Area Network, just as it is for the SAB 80C166. In contrast to the the example shown in
figure 4.2-1, however, the SAE 81C91 (P-LCC 28, without I/O ports) was selected in the
circuit shown in figure 4.3-1. It is connected to the C511 / C513 and its Synchronous
Serial Channel (SSC) via the Serial Synchronous Interface (SI), which is selected by
applying a high level to the MS pin. In this example, the SSC should be configured as
follows: master mode, clock idle level = low, first edge of clock (= rising edge) = data shift,
second edge (= trailing edge) = data shift. The data width is 8 bits, MSB is sent / received
first.

CAN-Bus
Transceiver

Receive

Transmit
CAN_H

CAN_L

CAN_L

MS

INT#

CS#

XTAL1

TX0

RX0

n.c.TX1

Vcc

7

8

11

10

9

DI
DO
CLK

19

20

21

W#
22

TIM

18

12

WR#
RD#
ALE

GND

Vcc

AD7

AD5

15

24

17

16

AD6
26

25

23

SCLK

Pa.b

Pc.d

21max.
12 MHz

max.
20 MHz

4

STO
SRI

6

5

X227

P3.2
(INT0#)

14

RES#
  4

Reset

P1.6 8

P1.7 9

P1.5
7

Vcc

C511 / C513

CAN_H 

(Standby)

R(opt)

RX1

Vref

Connection
of the

Application

Figure 4.3-1:
Connection of a C511 / C513
to CAN via the SAE 81C91 (serial)

SAE 81C91

GND

n.c.

Figure 4.3-1:
Connection of a C511 / C513 to CAN via the SAE 81C91 (serial)

Every access to the SAE 81C91 is started by activating the device (CS# = 0), performed
by a port pin (e.g. P1.6). Pin P1.5 of the C511 / C513 then selects a read (W# = 1) or a
write (W# = 0) operation via the W# input of the CAN controller. Then the address of the
register to be read or written is sent to the SAE 81C91 via the line connecting pin STO
(SSC Transmit Output) with pin DI (Data Input). Depending on the operation, one or more
(if the automatic decrementing of the address is activated in the CAN controller by setting



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 33 of 63 AP2900  06.97

bit ADE in the MOD register) data bytes can be written to the SAE 81C91 or can be read
via the line between pin SRI (SSC Receive Input) and pin DO (Data Output). Finally, the
CAN controller has to be deactivated again (CS# = 1).

The synchronization of the controllers is done via the line SCLK - CLK. Data from pin DI
are always transferred into the internal shift register with the rising edge of the clock. The
level applied to the timing pin (TIM) of the CAN controller decides whether data is output
at the DO pin with the rising edge (TIM = 0) or with the falling edge (TIM = 1, see figure
4.3-1) of the CLK signal. Pin P1.7 of the C511 / C513 controls the slope control pin of the
CAN transceiver, when available. On the CAN controller side, an inactive level is applied
to pins WR#, RD#, and ALE, and to pins AD5 to AD7, which are not required when the
serial connection between the SAE 81C91 and the host controller is used.

4.4 A proposal for the CAN Bus Cables

The CAN standard does not include the connectors with which an application is
connected to the bus lines. A proposal of the CAN user group "CAN in Automation" (CiA)
uses 9-pole SUB-D connectors with the following pin usage:

Pin Signal Description
1 — (reserved)
2 CAN_L CAN_L bus line
3 GND ground
4 — (reserved)
5 — (reserved)
6 (GND) optional ground
7 CAN_H CAN_H bus line
8 — (reserved)
9 (V+) opt. power supply



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 34 of 63 AP2900  06.97

5. Ways of handling the SAE 81C90/91 and the CAN Module

on the C167CR / C515C

5.1 Notes on the following Sections

The following sections contain important hints necessary for establishing a communication
via the CAN bus using the devices described above. The program parts are mainly written
in "C". They show just one way to solve a certain problem and they don't claim for
optimized code. For better understanding the reader should also refer to the Siemens
information "Description of the On-Chip CAN-Module", the SAE 81C90/91 Data Sheet,
and the C515C User's Manual.

5.2 Accessing the Registers of the CAN Module and the SAE 81C90/91

To access the registers of the CAN module and the SAE 81C90/91, the registers have
been given names that show the task of the respective register. Via pointer these names
have been connected with the respective address in three include files. Therefore, in the
software hints, not "address EF04h of the C167CR" is accessed but "directly" the register
"BTR" (the Bit Timing Register). Those registers, which appear more than once (e.g. in
each message object) are given the name adder "_M1", "_M2" etc. for message object 1,
2 etc. Another possibility would be to define the message objects as "structures"
("MOBJ1", "MOBJ2",...) to then access for example the Message Control Register of
message object 5 with "MOBJ5.MCR".

Extract from the include file for the C167CR:

/* Register Address */
#define CSR *(unsigned int *) 0xef00
#define IR *(unsigned char*) 0xef02
#define BTR *(unsigned int *) 0xef04
#define GMS *(unsigned int *) 0xef06
#define UGML *(unsigned int *) 0xef08
#define LGML *(unsigned int *) 0xef0a
#define UMLM *(unsigned int *) 0xef0c
#define LMLM *(unsigned int *) 0xef0e
#define MCR_M1 *(unsigned int *) 0xef10
#define UAR_M1 *(unsigned int *) 0xef12
#define LAR_M1 *(unsigned int *) 0xef14
#define MCFG_M1 *(unsigned char*) 0xef16
#define DB0_M1 *(unsigned char*) 0xef17
#define DB1_M1 *(unsigned char*) 0xef18
#define DB2_M1 *(unsigned char*) 0xef19
#define DB3_M1 *(unsigned char*) 0xef1a
#define DB4_M1 *(unsigned char*) 0xef1b
#define DB5_M1 *(unsigned char*) 0xef1c
#define DB6_M1 *(unsigned char*) 0xef1d
#define DB7_M1 *(unsigned char*) 0xef1e
#define MCR_M2 *(unsigned char *) 0xef20
#define ...
...



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 35 of 63 AP2900  06.97

Extract from the include file for the C515C:

/* Register Address */
#define CR *(unsigned char*) 0xf700
#define SR *(unsigned char*) 0xf701
#define IR *(unsigned char*) 0xf702
#define BTR0 *(unsigned char*) 0xf704
#define BTR1 *(unsigned char*) 0xf705
#define GMS0 *(unsigned char*) 0xf706
#define GMS1 *(unsigned char*) 0xf707
#define UGML0 *(unsigned char*) 0xf708
#define UGML1 *(unsigned char*) 0xf709
#define LGML0 *(unsigned char*) 0xf70a
#define LGML1 *(unsigned char*) 0xf70b
#define UMLM0 *(unsigned char*) 0xf70c
#define UMLM1 *(unsigned char*) 0xf70d
#define LMLM0 *(unsigned char*) 0xf70e
#define LMLM1 *(unsigned char*) 0xf70f

#define MCR0_M1 *(unsigned char*) 0xf710
#define MCR1_M1 *(unsigned char*) 0xf711
#define UAR0_M1 *(unsigned char*) 0xf712
#define UAR1_M1 *(unsigned char*) 0xf713
#define LAR0_M1 *(unsigned char*) 0xf714
#define LAR1_M1 *(unsigned char*) 0xf715
#define MCFG_M1 *(unsigned char*) 0xf716
#define DB0_M1 *(unsigned char*) 0xf717
#define DB1_M1 *(unsigned char*) 0xf718
#define DB2_M1 *(unsigned char*) 0xf719
#define DB3_M1 *(unsigned char*) 0xf71a
#define DB4_M1 *(unsigned char*) 0xf71b
#define DB5_M1 *(unsigned char*) 0xf71c
#define DB6_M1 *(unsigned char*) 0xf71d
#define DB7_M1 *(unsigned char*) 0xf71e

#define MCR0_M2 *(unsigned char*) 0xf720
#define ...
...



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 36 of 63 AP2900  06.97

Extract from the include file for the SAE 81C90/91 (according to the specification 01/97):

/* Register Addresse */
#define BL1 *(unsigned char far*) 0x...00
#define BL2 *(unsigned char far*) 0x...01
#define OC *(unsigned char far*) 0x...02
#define BRPR *(unsigned char far*) 0x...03
#define RRR1 *(unsigned char far*) 0x...04
#define RRR2 *(unsigned char far*) 0x...05
#define RIMR1 *(unsigned char far*) 0x...06
#define RIMR2 *(unsigned char far*) 0x...07
#define TRSR1 *(unsigned char far*) 0x...08
#define TRSR2 *(unsigned char far*) 0x...09
#define IMSK *(unsigned char far*) 0x...0a
#define MOD *(unsigned char far*) 0x...10
#define INT *(unsigned char far*) 0x...11
#define CTRL *(unsigned char far*) 0x...12

...

#define DR0H *(unsigned char far*) 0x...40
#define DR0L *(unsigned char far*) 0x...41

#define DR1H *(unsigned char far*) 0x...42
#define DR1L *(unsigned char far*) 0x...43

...

#define BYTE0MSG0 *(unsigned char far*) 0x...80
#define BYTE1MSG0 *(unsigned char far*) 0x...81
#define BYTE2MSG0 *(unsigned char far*) 0x...82
#define BYTE3MSG0 *(unsigned char far*) 0x...83
#define BYTE4MSG0 *(unsigned char far*) 0x...84
#define BYTE5MSG0 *(unsigned char far*) 0x...85
#define BYTE6MSG0 *(unsigned char far*) 0x...86
#define BYTE7MSG0 *(unsigned char far*) 0x...87

#define BYTE0MSG1 *(unsigned char far*) 0x...88
...

The absolute addresses have to be chosen according to the address range the controller
is supposed to be located in.



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 37 of 63 AP2900  06.97

5.3 Configuration of the Bit Timing
Before initializing the CAN controllers, one has to think about the internal frequencies of
the devices as well as the baudrate of the CAN bus. The registers that are responsible for
the bit timing contain the parameters TSEG1, TSEG2, SJW and BRP which have to be
programmed accordingly.

In the following section, a way to determine these parameters for a special controller
frequency (e.g. 20 MHz) and a certain CAN baudrate (e.g. 125 kbit/s) shall be presented.
The calculations are based on the following (rough) structure of one bit time (figure 5.3-1):

}

1 bit time tBIT

Length:
(TSEG1+1)*tq

Length:
(TSEG2+1)*tq

1 time quantum
Length: tq

Sample-
point

SYNC_SEG
PHASE_SEG2PHASE_SEG1

(+ PROP_SEG )

Figure 5.3-1:
Rough Structure of one Bit Cell in the CAN Module
of the C167CR / C515C and in the SAE 81C90/91

• The following equations apply to figure 5.3-1:

tBIT = tSYNC_SEG + tPHASE_SEG1 + tPHASE_SEG2 (1)

tSYNC_SEG = 1 * tq (2)

tPHASE_SEG1 = (TSEG1 + 1) * tq (3)

tPHASE_SEG2 = (TSEG2 + 1) * tq (4)

tq = (BRP + 1) * tCAN_CLOCK (5)

tSJW = (SJW + 1) * tq (6)

Please note that TSEG1, TSEG2, BRP and SJW are the numerical values of the
respective fields to be programmed in the respective registers of the controllers ,
tq represents one BTL cycle (see section 2.4).



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 38 of 63 AP2900  06.97

The following equation applies to the C167CR: tCAN_CLOCK = 2 * tXCLK =
2

fCPU
.

The following equation applies to the C515C: tCAN_CLOCK = 1 CLP =
1

fCPU
.

The following equation applies to SAE 81C90/91: tCAN_CLOCK = 2 * tOSC =
2

fOSC
.

• Equations (2), (3) and (4) inserted into (1) results in:

tBIT = 1*tq + (TSEG1 + 1)*tq + (TSEG2 + 1)*tq

which is equal to

tBIT = 3*tq + (TSEG1 + TSEG2)*tq.

• This equation solved to (TSEG1 + TSEG2) results in:

(TSEG1 + TSEG2) =
t 3 * t

t

BIT q

q

−
.

• Inserting (5) results in

(TSEG1 + TSEG2) =
t

(BRP 1) * t

BIT

CAN_ CLOCK+
- 3. (7)

• The following applies to (TSEG1 + TSEG2):

1 ≤ (TSEG1 + TSEG2) ≤ 22 and (TSEG1 + TSEG2) ∈ N,

because the possible values for TSEG1 are between 0 and 15 and for TSEG2 are
between 0 and 7 and both parameters have to be integer. Now certain values of tBIT,
tCAN_CLOCK, and BRP (possible values for BRP are 0 to 63) result in different possible
values for (TSEG1 + TSEG2).

Example: C167CR CPU clock: 20 MHz ⇒ tCAN_CLOCK = 100 ns
Desired CAN baudrate: 125 kBit/s ⇒ tBIT = 1 / baudrate = 8 µs



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 39 of 63 AP2900  06.97

Using equation (7) results in the following table with the valid values of
(TSEG1 + TSEG2). Additionally, tq is calculated using equation (5).

BRP
(0 ≤≤ BRP ≤≤ 63)

...
3 4

...
7

...
9

...

TSEG1 + TSEG2
(1 ≤≤ x ≤≤ 22)

...
17 13

...
7

...
5

...

tq [ns]
...

400 500
...

800
...

1000
...

When choosing one possibility for BRP, TSEG1, and TSEG2, some rules have to be
obeyed so that the CAN specification is fulfilled. Signal delays by the bus lines, input
comparators and output drivers have to be taken into account.

General rules for TSEG1 and TSEG2 depending on BRP:

if BRP = 0: if BRP ≥ 1:
TSEG1 ≥ 2
TSEG2 ≥ 1

TSEG1 ≥ 1
TSEG2 ≥ 0

As a general rule, the sampling of the bit should take place at about 60-70% of the total
bit time. Nevertheless, for each system the delays of bus drivers, transmitter / receiver
circuits and the bus lines have to be taken into account when configuring the sample
point. Examples can be found in the "Description of the on-chip CAN Module", page N-32
/ N33.

If BRP is chosen to be 4, then TSEG1 + TSEG2 = 13 and tq is 500 ns. Therefore the total
bit time of 8 µs is devided into 16 tq. One tq is needed for the Synchronization Segment
which leaves 15 tq left for Phase Buffer Segment 1 and Phase Buffer Segment 2 (see
figure 5.3-1 again).

60% of 16 tq are about 10 tq which results in the following configuration:

• 1 tq for the Synchronization Segment

• 9 tq for Phase Buffer Segment 1

• 6 tq for Phase Buffer Segment 2.



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 40 of 63 AP2900  06.97

This means that TSEG1 and TSEG2 should be programmed to the following values:

TSEG1 = 8; TSEG2 = 5.

General rules for the SJW:

0 ≤ SJW ≤ 3;
SJW ≤ TSEG2.

This means that SJW could be programmed to the maximum value of 3. But normally such
a big SJW is only necessary when the clock generation of the different nodes is quite
inaccurate, e.g. if ceramic resonators are used. So a SJW of 1 should be enough.

With other baudrates and clock frequencies the calculation can be done in the same way.
On request three EXCEL tools (CP_167CR.XLS, CP_81C90.XLS, CP_C515C.XLS) are
available which calculate proposals for the different parameters from the used frequency
and baudrate.



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 41 of 63 AP2900  06.97

5.4 Ways of Handling the CAN Module

5.4.1 The Initialization of the CAN Module on the C167CR / C515C

• The initialization starts with setting bits INIT and CCE in the Control Register.

C167CR:
CSR = 0x0041; /* Contr./Stat.Register(Adr.EF00h) */

/* 0 0 0 0  0 0 0 0 <STATUS CONTROL> 0 1 0 0  0 0 0 1 */

/* - - - R  T  LEC                   0 C - -  E S I I  */
/*       X  X                          C      I I E N */
/*       O  O                          E      E E   I  */
/*       K  K                                       T */

C515C:

CR = 0x41; /* Control Register (Adr. F700h) */

/* 0 1 0 0  0 0 0 1 */

/* T C - -  E S I I  */
/* E C      I I E N */
/* S E      E E   I  */
/* T              T */

• In the Bit Timing Register, the baudrate then can be configured (e.g. to 125 kbit/s) (see
also section 5.3).

/* load Bit Timing Register */

C167CR:

BTR = 0x4944; /* = 125 kbit/s (@ f CPU = 20 Mhz) */

/* 0 1 0 0  1 0 0 1  0 1 0 0  0 1 0 0  */
/* - TSEG2   TSEG1   SJW|<--  BRP -->| */

C515C:

BTR0 = 0x41;
BTR1 = 0x6B; /* = 125 kbit/s (@ f CPU = 5 MHz)*/

/* 0 1 1 0  1 0 1 1 <BTR1 BTR0> 0 1 0 0  0 0 0 1  */
/* - TSEG2   TSEG1              SJW|<--  BRP -->| */



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 42 of 63 AP2900  06.97

• If Standard CAN is used then the "Global Mask Short" has to be initialized according to
the identifier bits to be used for acceptance filtering (application specific). Shall all bits
of the 11-bit identifier be evaluated, then all respective bits of the "Global Mask Short"
are set to "1":

C167CR:

GMS = 0xE0FF; /* Global Mask Short (Adr. EF06h) */

/* 1 1 1 0  0 0 0 0  1 1 1 1  1 1 1 1 */

/* 2 1 1             2 2 2 2  2 2 2 2   (Ident.-Bits */
/* 0 9 8 -  - - - -  8 7 6 5  4 3 2 1     18 - 28)   */

C515C:

GMS0 = 0xFF; /* Global Mask Short Low (Adr. F706h) */
GMS1 = 0xE0; /* Global Mask Short High (Adr. F707h) */

/* 1 1 1 0  0 0 0 0 <GMS1 GMS0> 1 1 1 1  1 1 1 1 */

/* 2 1 1             (Id.-Bits  2 2 2 2  2 2 2 2 */
/* 0 9 8 -  - - - -    18-28)   8 7 6 5  4 3 2 1 */

• If Extended CAN is used, then the "Upper Global Mask Long" and the "Lower Global
Mask Long" have to be initialized according to the identifier bits to be used for
acceptance filtering (application specific). Shall all bits of the 29-bit identifier be
evaluated, then all respective bits of the "Global Mask Short" are set to "1":

C167CR:

UGML = 0xFFFF;  /* Upper Global Mask Long (Adr.EF08h) */

/* 1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1 */

/* 2 1 1 1  1 1 1 1  2 2 2 2  2 2 2 2   (Ident.-Bits */
/* 0 9 8 7  6 5 4 3  8 7 6 5  4 3 2 1     13 - 28)   */

LGML = 0xF8FF;  /* Lower Global Mask Long (Adr.EF0Ah) */

/* 1 1 1 1  1 0 0 0  1 1 1 1  1 1 1 1 */

/*                   1 1 1              (Ident.-Bits */
/* 4 3 2 1  0 - - -  2 1 0 9  8 7 6 5      0 - 12)   */



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 43 of 63 AP2900  06.97

C515C:

UGML0 = 0xFF;  /*Upper Gl. Mask Long Low (Adr.F708h)*/
UGML1 = 0xFF;  /*Upper Gl. Mask Long High (Adr.F709h)*/

/* 1 1 1 1  1 1 1 1 <UGML1 UGML0> 1 1 1 1  1 1 1 1 */

/* 2 1 1 1  1 1 1 1   (Id.-Bits   2 2 2 2  2 2 2 2 */
/* 0 9 8 7  6 5 4 3     13 - 28)  8 7 6 5  4 3 2 1 */

LGML0 = 0xFF;  /*Lower Gl. Mask Long Low (Adr.F70Ah)*/
LGML1 = 0xF8;  /*Lower Gl. Mask Long High (Adr.7F0Bh)*/
/* 1 1 1 1  1 0 0 0 <LGML1 LGML0> 1 1 1 1  1 1 1 1 */

/*                   (Id.-Bits    1 1 1            */
/* 4 3 2 1  0 - - -    0 - 12)    2 1 0 9  8 7 6 5 */

• If the Basic CAN feature shall be used (message object 15), also the "Upper Mask of
Last Message" and the "Lower Mask of Last Message" have to be initialized according
to the identifier bits to be used for acceptance filtering of message object 15
(application specific). Shall all frames be received in MO 15 that cannot be stored in
any other message object, all bits of the Mask of Last Message have to be set to 0 (=
don't care):

C167CR:

UMLM = 0x0000;  /* Upper Mask of Last Mess. (Adr.EF0Ch) */
/* 0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0 */

/* 2 1 1 1  1 1 1 1  2 2 2 2  2 2 2 2   (Ident.-Bits */
/* 0 9 8 7  6 5 4 3  8 7 6 5  4 3 2 1     13 - 28)   */

LMLM = 0x0000; /* Lower Mask of Last Mess. (Adr.EF0Eh) */

/* 0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0 */

/*                   1 1 1              (Ident.-Bits */
/* 4 3 2 1  0 - - -  2 1 0 9  8 7 6 5      0 - 12)   */

C515C:

UMLM0 = 0x00;  /*Upper Mask of Last Mess. Low (F70Ch)*/
UMLM1 = 0x00;  /*Upper Mask of Last Mess. High (F70Dh)*/

/* 0 0 0 0  0 0 0 0 <UMLM1 UMLM0> 0 0 0 0  0 0 0 0 */

/* 2 1 1 1  1 1 1 1 (Ident.-Bits  2 2 2 2  2 2 2 2 */
/* 0 9 8 7  6 5 4 3    13 - 28)   8 7 6 5  4 3 2 1 */

LMLM0 = 0x00; /*Lower Mask of Last Mess. Low (F70Eh)*/
LMLM0 = 0x00; /*Lower Mask of Last Mess. High (F70Fh)*/

/* 0 0 0 0  0 0 0 0 <LMLM1 LMLM0> 0 0 0 0  0 0 0 0 */



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 44 of 63 AP2900  06.97

/*                  (Ident.-Bits  1 1 1            */
/* 4 3 2 1  0 - - -    0 - 12)    2 1 0 9  8 7 6 5 */

Please also see section 5.6 for the use of the Basic CAN feature.

• Then the message objects are configured. For this reason,
- Message Configuration Register,
- Arbitration Registers and
- Message Control Register

of the respective message have to be initialized.

In the Message Configuration Register, the following configurations have to be made:
- Length of the Data Field of the message (DLC = 0000b - 1000b),
- Used protocol:

XTD = 0:Standard CAN,
XTD = 1:Extended CAN

- Direction of the object (please also see table below):
DIR = 1: transmit Data Frames; receive and answer Remote Frames

(in the following called "transmit object"),
DIR = 0: transmit Remote Frames; receive Data Frames

(in the following called "receive object")

CAN Module
DIR-BIT

Behaviour

Transmission of
this message

object will
generate...

If a Data Frame
with a matching

identifier is
received...

If a Remote Frame
with a matching

identifier is received...

DIR Bit = 0
=Receive Object
(receives Data

Frames,
transmits Remote

Frames)

... a Remote
Frame. The

corresponding
Data Frame is

stored in this MO
on reception.

... the Data Frame
is stored.

... the Remote Frame is
NOT answered.

DIR Bit = 1
=Transmit Object
(transmits Data

Frames,
receives Remote

Frames)

... a Data Frame. ... the Data Frame
is NOT stored.

... the Remote Frame is
answered with the

corresponding Data
Frame.



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 45 of 63 AP2900  06.97

Example for a Standard CAN transmit object with 8 bytes data length:

C167CR / C515C:

MCFG_Mn = 0x88; /*Mess. Configur. Reg. n (EFn6h/F7n6h)*/

/* 1 0 0 0  1 0 0 0 */

/*|<-DLC->| D X - - */
/*          I T     */
/*          R D     */

Example for an Extended CAN receive object with 3 bytes data length:

C167CR / C515C:

MCFG_Mn = 0x34; /*Mess. Configur. Reg. n (EFn6h/F7n6h)*/

/* 0 0 1 1  0 1 0 0 */

/*|<-DLC->| D X - - */
/*          I T     */
/*          R D     */

• Then the identifier of the message is configured in the Arbitration Registers
corresponding to the chosen CAN protocol. Please mind the identifier bit positions in
these registers:

/* Configure identifier: */
/* (example for Standard CAN (11-bit identifier) */

C167CR:

UAR_Mn = 0xE068; /* Upper Arbitr. Reg. n (Adr. EFn2h) */

/* 1 1 1  0  0 0 0 0  0 1 1 0  1 0 0 0  */

/* 2 1 1 1  1 1 1 1  2 2 2 2  2 2 2 2  (Identifier-Bits */
/* 0 9 8 7  6 5 4 3  8 7 6 5  4 3 2 1       13 - 28 )   */

LAR_Mn = 0x0000; /* Lower Arbitr. Reg. n (Adr. EFn4h) */

/* 0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0 */

/* 4 3 2 1  0 |res|  1 1 1 9  8 7 6 5  (Identifier-Bits */
/*                   2 1 0                  0 - 12)     */



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 46 of 63 AP2900  06.97

C515C:

UAR0_Mn = 0x68; /* Upper Arbitr. Reg. n Low (F7n2h) */
UAR1_Mn = 0xE0; /* Upper Arbitr. Reg. n High (F7n3h) */

/* 1 1 1  0  0 0 0 0 <UAR1_Mn UAR0_Mn> 0 1 1 0  1 0 0 0  */

/* 2 1 1 1  1 1 1 1    (Id.-Bits      2 2 2 2  2 2 2 2 */
/* 0 9 8 7  6 5 4 3     13 - 28)      8 7 6 5  4 3 2 1 */

LAR0_Mn = 0x00; /* Lower Arbitr. Reg. n Low (F7n4h) */
LAR1_Mn = 0x00; /* Lower Arbitr. Reg. n High (F7n5h) */

/* 0 0 0 0  0 0 0 0 <LAR1_Mn LAR0_Mn> 0 0 0 0  0 0 0 0 */

/* 4 3 2 1  0 |res|    (Id.-Bits      1 1 1 9  8 7 6 5 */
/*                       0 - 12)      2 1 0            */

/* ⇒ results in the 11-bit identifier "0110 1000  111 "  */

• In the respective Message Control Register, the object is declared valid
(MSGVAL = set) and the programmer can decide whether he wants to get an interrupt
on successful reception (RXIE = set) and / or transmission (TXIE = set) of a frame. As
the data bytes of the message object contain unpredictable data at this time, CPUUPD
is set in the transmit objects in order to prevent the object from being transmitted at this
time (e.g. by an incoming Remote Frame). CPUUPD has to be kept set until the data
bytes have been filled with real data. Receive objects do not have a CPUUPD field.
This field is called MSGLST in these objects and is set by the CAN controller if a new
message comes in before the previously received message has been read out.

Example for a transmit object which shall not generate interrupts:

C167CR:

MCR_Mn = 0x5995; /* Configure Transmit Object n */

C515C:

MCR0_Mn = 0x95; /* Configure Transmit Object n */
MCR1_Mn = 0x59;

/* RMTPND = reset; TXRQ   = reset */
/* CPUUPD = set ; NEWDAT = reset */
/* MSGVAL = set ; TXIE   = reset */
/* RXIE   = reset; INTPND = reset */



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 47 of 63 AP2900  06.97

Example for a receive object with interrupt generation on successful reception of a Data
Frame (RXIE = set):

C167CR:

MCR_Mn = 0x5599; /* Configure Receive Object n */

C515C:

MCR0_Mn = 0x99 /* Configure Receive Object n */
MCR1_Mn = 0x55;

/* RMTPND = reset; TXRQ   = reset */
/* MSGLST = reset; NEWDAT = reset */
/* MSGVAL = set ; TXIE   = reset */
/* RXIE   = set ; INTPND = reset */

• If the programmer wishes the data bytes to be in a defined state, he can set all data
bytes of the message object to zero now:

C167CR / C515C:

DB0_Mn = 0x00; /* set data bytes to 0 */
DB1_Mn = 0x00; /* (Addr. EFn7h - EFnEh (C167CR)  */
DB2_Mn = 0x00; /* (Addr. F7n7h - F7nEh (C515C)   */
DB3_Mn = 0x00;
DB4_Mn = 0x00;
DB5_Mn = 0x00;
DB6_Mn = 0x00;
DB7_Mn = 0x00;

Finally, all message objects that will not be used have to be declared as not valid:

C167CR:

MCR_Mn = 0x5555; /* reset all functions incl. MSGVAL */

C515C:

MCR0_Mn = 0x55; /* reset all functions incl. MSGVAL */
MCR1_Mn = 0x55;

• Clearing bits INIT and CCE ends the initialization. Setting the bits IE (Interrupt Enable),
SIE (Status Change Interrupt Enable), and EIE (Error Interrupt Enable) at the same
time enables all interrupts of the CAN module to the CPU.



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 48 of 63 AP2900  06.97

C167CR:

CSR = 0x000E; /* End initialization */

/* 0 0 0 0  0 0 0 0 <STATUS CONTROL> 0 0 0 0  1 1 1 0  */

/* - - - R  T  LEC                   0 C - -  E S I  I  */
/*       X  X                          C      I I E  N */
/*       O  O                          E      E E    I  */
/*       K  K                                       T */

C515C:

CR = 0x0E; /* End initialization */

/* 0 0 0 0  1 1 1  0 */

/* T C - -  E S I  I  */
/* E C      I I E  N */
/* S E      E E    I  */
/* T              T */

Now the CAN module waits for 11 consecutive recessive bits on the CAN bus (bus idle)
and can then participate in the bus communication.



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 49 of 63 AP2900  06.97

5.4.2 The Transmission of a Data Frame with the CAN Module

• Make sure that you have configured a valid message object as transmit object (DIR=1).
Before the next transmission, the TXOK bit in the Control Register which may be still
set from the last successful transmission can be reset.

C167CR:

CSR &= 0xFFF7; /* Reset TXOK */

C515C:

SR &= 0xF7; /* Reset TXOK */

• Then "CPUUPD" (CPU Update) and "NEWDAT" (New Data) of the transmit object's
corresponding Message Control Register should be set to show that the CPU now
wants to work on the data bytes of this transmit object.

C167CR:

MCR_Mn = 0xFAFF; /* Set CPUUPD and NEWDAT */

C515C:

MCR1_Mn = 0xFA; /* Set CPUUPD and NEWDAT */

/* RMTPND = unchanged; TXRQ   = unchanged */
/* CPUUPD = set ; NEWDAT = set        */
/* MSGVAL = unchanged; TXIE   = unchanged */
/* RXIE   = unchanged; INTPND = unchanged */

• Now the data byte(s) (1-8 referring to the DLC field in the Message Configuration
Register) can be filled with the respective message (DLC = 4 here):

C167CR / C515C:

DB0_Mn = 0x00; /* load data byte 0 with 00H */
DB1_Mn = 0x11; /* load data byte 1 with 11H */
DB2_Mn = 0x22; /* load data byte 2 with 22H */
DB3_Mn = 0x33; /* load data byte 3 with 33H */



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 50 of 63 AP2900  06.97

• By resetting "CPUUPD" and setting the Transmission Request field "TXRQ" in the
Message Control Register, the CAN controller resets NEWDAT and transmits the Data
Frame:

C167CR:

MCR_Mn = 0xE7FF; /* send Data Frame */

C515C:

MCR1_Mn = 0xE7; /* send Data Frame */

/* RMTPND = unchanged; TXRQ   = set        */
/* CPUUPD = reset ; NEWDAT = unchanged */
/* MSGVAL = unchanged; TXIE   = unchanged */
/* RXIE   = unchanged; INTPND = unchanged */

If the data bytes of the message object are not to be changed, setting TXRQ is enough
to transmit the message. If the transmission was successful and was acknowledged by
at least one other node, and if NEWDAT is still 0 after the transmission, the CAN
controller resets TXRQ and RMTPND, sets bit TXOK in the Status Register and
generates a status change interrupt (if enabled in the Control Register (IE=1; SIE=1)).
If TXIE is set in the respective Message Control Register, a transmit interrupt is
generated (if enabled in the Control Register (IE=1)).



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 51 of 63 AP2900  06.97

5.4.3 The Transmission of a Remote Frame with the CAN Module

• Make sure that you have configured a valid message object as receive object (DIR=0).
Before the transmission of the Remote Frame, check NEWDAT first. If NEWDAT = 1,
then the last received message for this object has not yet been read out, which should
be done now together with a reset of NEWDAT. After another check of NEWDAT
(which should be 0 by then), a Remote Frame can be generated by setting TXRQ in the
Message Control Register of this message object.

C167CR:

MCR_Mn = 0xEFFF; /* send Remote Frame */

C515C:

MCR1_Mn = 0xEF; /* send Remote Frame */

/* RMTPND = unchanged; TXRQ   = set        */
/* MSGLST = unchanged ; NEWDAT = unchanged */
/* MSGVAL = unchanged; TXIE   = unchanged */
/* RXIE   = unchanged; INTPND = unchanged */

• Then the node which is supposed to provide the requested data will receive the
Remote Frame and answer it with the corresponding Data Frame. If this Data Frame is
received, the CAN controller sets NEWDAT in the Message Control Register. So the
CPU could poll NEWDAT to wait for this event:

C167CR:

while ((MCR_Mn & 0x0200) == 0);

C515C:

while ((MCR1_Mn & 0x02) == 0);

/* wait until Data Frame arrives (until NEWDAT = 1) */

Another possibility is to react on the receive interrupt or the status change interrupt of
the CAN controller which are generated on the reception of the Data Frame (if enabled
in the Control Register (IE=1; SIE=1) or in the Message Control Register (RXIE=set)
resp.).

• Now the requested data can be read from the data bytes of the message object.

• NEWDAT should then be reset:



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 52 of 63 AP2900  06.97

C167CR:

MCR_Mn = 0xFDFF; /* reset NEWDAT */

C515C:

MCR1_Mn = 0xFD; /* reset NEWDAT */

/* RMTPND = unchanged; TXRQ   = unchanged */
/* MSGLST = unchanged ; NEWDAT = reset      */
/* MSGVAL = unchanged; TXIE   = unchanged */
/* RXIE   = unchanged; INTPND = unchanged */



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 53 of 63 AP2900  06.97

5.4.4 Evaluation of a received Message with the CAN Module

• If the C167CR or the C515C receive a message with a matching identifier this can
either be a data or a Remote Frame.

If a Remote Frame is received in one of the message objects 1-14 configured as
transmit object (DIR=1), only the data length code is stored in the corresponding object.
The identifier and the data bytes remain unchanged. The CAN controller sets TXRQ
and RMTPND in the corresponding Message Control Register. The set TXRQ bit field
will cause the Remote Frame to be immediately and automatically answered by the
CAN controller with the corresponding Data Frame (if the CPUUPD field is not set!). If
RXIE in the Message Control Register and the global Interrupt Enable bit (bit IE in the
Control Register) is set, the CAN controller also sets INTPND (INterrupt PeNDing) in
the Message Control Register which generates an receive interrupt to the CPU

If a Data Frame is received in a receive object (DIR=0) and NEWDAT=0 in the
corresponding Message Control Register, the CAN controller sets NEWDAT and the
data in the Data Field is written into the data bytes of the corresponding receive object.
Additionally, the Arbitration Registers and the data length code of the receive object
are updated with the identifier and the data length code of the received Data Frame. If
RXIE in the corresponding Message Control Register and the global Interrupt Enable
bit (bit IE in the Control Register) is set, the CAN controller sets INTPND (INterrupt
PeNDing) in the Message Control Register which generates an receive interrupt to the
CPU.

In the C167CR, CAN interrupts are controlled via the corresponding Interrupt Control
Register XP0IC. In the C515C, CAN interrupts can be activated / deactivated via the bit
ECAN of the Special Function Register IEN2.

• In the interrupt service routine, the reason for the interrupt (status change interrupt or
interrupt of one of the message objects) can be read from the contents of the Interrupt
Register (the so-called INTID (=INTerrupt IDentifier)). If bit SIE in the Control Register
has been set and the CAN controller updated (not necessarily changed) the Status
Register (which it always does on transmission or reception of a frame), INTID will have
the value "01". If a message has been received, RXOK is set, if a message has been
successfully transmitted, TXOK is set. Read the Status Register to service the status
change interrupt and to update INTID. If a message was received by message object
"n", INTID will then have the value "n+2".

After now the message object that has caused the interrupt has been identified, the
data bytes of the message objects can be read and evaluated. Then INTPND and
NEWDAT in the corresponding Message Control Register can be reset:



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 54 of 63 AP2900  06.97

C167CR:

MCR_Mn = 0xFDFD; /* reset INTPND,NEWDAT of obj. n */

C515C:

MCR0_Mn = 0xFD; /* reset INTPND,NEWDAT of obj. n */
MCR1_Mn = 0xFD

/* RMTPND = unchanged; TXRQ   = set       */
/* MSGLST = unchanged ; NEWDAT = reset     */
/* MSGVAL = unchanged; TXIE   = unchanged */
/* RXIE   = unchanged; INTPND = reset     */

General hints concerning the interrupt handling:

1. When resetting INTPND, also the corresponding value in the INTID in the interrupt
register is cleared. If further interrupts are pending, the interrupt with the next highest
priority will appear in INTID. If no more interrupt is pending, INTID will get 00h. A CAN
interrupt service routine must not be left until INTID has the value 00h. Otherwise the
interrupt line to the stays active and no further interrupt generation from the CAN
module to the CPU occurs.

2. Please note that reading the status partition (= high byte) of the Control/Status Register
of the C167CR will clear the Status Change INTID in the Interrupt Register. Also note
that this also happens when reading the whole 16-bit Control/Status Register because
this word access also reads the status partition of this register. If you want to read the
control partition without the clearing of the Status Change INTID, use byte access to
the low byte of the Control/Status Register. - Reading the Status Register in the C515C
has the same effect of clearing the Status Change INTID.

3. The Interrupt with the lowest INTID has the highest priority. If an interrupt with a higher
priority occurs, before a pending interrupt with lower priority is serviced, the INTID is
updated accordingly. So the servicing of the lower priority interrupt has to be
postponed.



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 55 of 63 AP2900  06.97

5.5 Ways of Handling the SAE 81C90/91

5.5.1 The Initialization of the SAE 81C90/91

• The initialization starts with setting both the bits IM and RES in the Mode/Status
Register MOD. The Control Register CTRL activates some special functions, but
clearing it to 00h is fine for the first approach. Then also the Interrupt Register is
cleared.

MOD = 0x03; /* load MOD (Addr. 10h) */

/*   0   0   0   0     0   0   1   1     */
/* ADE  RS  TC  TWL   RWL BS  RES  IM    */

CTRL = 0x00; /* clear CTRL (Addr. 12h) */

/*  0   0   0   0     0   0   0   0    */
/* RX TST TSP1 TSP0 TSOV SME TCE  MM   */

INT = 0x00; /* clear INT (Addr. 11h) */

/*  0   0   0   0     0   0   0   0    */
/* TCI EPI BOI WUPI RFI  WLI  TI  RI   */

• Now the baudrate is configured via the registers BRPR, BL1, and BL2. The values for
the parameters TSEG1, TSEG2, SJW in the registers BL1 and BL2 as well as the value
of the baudrate prescaler in the register BRPR are equivalent to those in the Bit Timing
Register of the C167CR (not C515C because of the missing prescaler!) and can also
be calculated the same way (see section 5.3). If the input signal is evaluated digitally
(only RX0 used), bit DI in BL2 has to be set. If the input signal is applied to the input
comparator (RX0 and RX1 used), DI has to be cleared. According to the CAN
specification, the Speed Mode bit SM should be cleared (only the recessive to
dominant edge is used for synchronization). Example for 125 kBit/s (81C90/91 external
clock = 20 MHz):

BRPR = 0x04; /* load BRPR (Addr. 03h) */
BL1 = 0x49; /* load BL1 (Addr. 00h) */
BL2 = 0x41; /* load BL2, Digital Input (Addr. 01h) */

/* 0 1 0 0  1 0 0 1  <BL1   BL2>  0 1 0 0  0 0  0 1  */
/* S TSEG2   TSEG1              I D - -  - S  SJW */
/* A                            P I        M      */
/* M                            O                 */
/*                              L                 */

• In the Interrupt Mask Register IMSK, bit ERI is set to globally enable interrupts to the
host controller generated by incoming messages. Other interrupts (on completed
transmissions, on reception of a Remote Frame, on entering the bus-off state etc.) can
be enabled as well if desired. Afterwards, in the Receive Interrupt Registers RIMR1 and



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 56 of 63 AP2900  06.97

RIMR2 the message objects that shall generate an interrupt on the reception of a
message have to be specified individually (here: message objects 1 to 5).

IMSK = 0x01; /* (Addr. 0Ah) interrupt on reception */

/*  0    0    0    0     0    0    0    1   */
/*ETCI EEPI EBOI EWUPI  ERFI EWLI ETI  ERI   */

RIMR1 = 0x3E; /* (Addr. 06h) recv. int. for MO 1 to 5 */
RIMR2 = 0x00; /* (Addr. 07h) */

/* 0 0 1 1  1 1 1  0 <RIMR1 RIMR2>  0 0 0 0  0 0 0 0     */
/* Messages                                             */
/* 7 6 5 4  3 2 1  0               1 1 1 1  1 1 9 8     */
/*                                5 4 3 2  1 0         */

• The Output Control Register, which specifies the connection to the physical layer, has
to be configured according to the application. In this example, it is configured to output
a low level at pin TX0 if a dominant bit is to be sent. It outputs a high level, if the bit to
be sent is recessive.

OC = 0x18; /* (Addr. 02h) DOM=LOW, RECESSIVE=HIGH */

/*   0 0 0  1 1 0  0 0   */
/*    Tx1    Tx0   OCM   */

• The Clock Control Register is used to determine the output frequency of the
SAE 81C90/91's CLK pin. The output frequency may be the oscillator frquency divided
by 1, 2, 4, 6, 8, 10, 12 or 14 or may be switched off completely. Writing to this register
requires a special protocol in order to avoid erroneous writing. In the following
example, the output frequency shall be programmed to fosc/2:

CCR = 0x80; /* Prepare writing to CCR (Addr. 14h) */
CCR = 0x01; /* Switch output frequency to fosc/2 */

Please note that this must be two consecutive accesses to the SAE 81C90/91.

• In the descriptor bytes, the identifier of the message objects and the length of the Data
Field is configured. The values have to be chosen according to the message objects in
other CAN nodes the SAE 81C90/91 shall communicate with. With the RTR bit, the
SAE 81C90/91 distinguishes between message objects handling only Data Frames
(RTR=0) or handling only Remote Frames (RTR=1). Please mind the following table:



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 57 of 63 AP2900  06.97

SAE 81C90/91
RTR-BIT

Behaviour

Transmission of
this message

object will
generate...

If a Data Frame
with a matching

identifier is
received...

If a Remote Frame
with a matching

identifier is received...

RTR Bit = 0
= Object that

handles
Data Frames

... a Data Frame. ... the Data Frame
is stored.

... the Remote Frame is
NOT answered.

RTR Bit = 1
= Object that

handles
Remote Frames

...a Remote Frame.
The corresponding

Data Frame is
NOT stored in this

MO!
The Data Frame

has to be received
by another MO

... the Data Frame
is NOT stored.

... the Remote Frame is
answered with the

corresponding Data
Frame.

• Please note that after a Remote Frame has been sent out (RTR=1), the corresponding
Data Frame is not stored in the same message object. The SAE 81C90/91 could be
used as follows:

• One message object is used for the transmission of Data Frames (RTR=0; e.g. MO 1),
whose identifier and DLC is always configured new before each transmission.

• One message object is used for the transmission of Remote Frames (RTR=1, DLC=0;
e.g. MO 2), whose identifier is always configured new before each transmission.

• Some other message objects are used for the reception of Data Frames (certain
identifier, certain DLC; RTR=0). In these message objects, also the Data Frames that
correspond to Remote Frames sent by MO 1 are received. This corresponds to a
receive object in the CAN module of the C167CR / C515C (without the possibility of
sending its own Remote Frames, though).

• The remaining message objects are used for the automatic answering of incoming
Remote Frames (certain identifier, certain DLC; RTR=1). This corresponds to a
transmit object in the CAN module of the C167CR / C515C (without the possibility of
sending its own Data Frames, though).

/* load descriptor bytes of MO n */
/* Example: Identifier 1001 0110 000, RTR = 0, DLC = 8 */

DRnH = 0x96; /* load descriptor high byte object n */
DRnL = 0x08; /* load descriptor low byte object n */

/* Byte H>  1 0 0 1  0 1 1 0 |  0 0 0  0  1 0 0 0 <Byte L  */
/*       |<-     IDENTIFIER     ->|RTR|<-DLC->|        */



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 58 of 63 AP2900  06.97

• The descriptor bytes that are not going to be used should be configured with an unused
identifier (as there's no way to completely disable a message object). Not initialized
descriptor bytes have unknown values after reset and can lead to unexpected behavior.
The data bytes can be cleared to 00h. Please note that writing to the data bytes must
always start with one of the data bytes 7 to 1 and must end with writing of data byte 0,
because on writing of data byte 0, the contents of the the shadow register is transferred
in parallel into the RAM of the respective message. Please also take care that a read
operation to the data bytes of a message object must not be interrupted by a write
operation and vice versa. This ensures that the SAE 81C90/91 always works on
consistent data.

/* invalidate unused descriptor bytes: */

DRmH = DRmL = 0x..; /* unused identifier */
...

/* clear corresponding data bytes: */

BYTE7MSGm = 0x00;
...
BYTE0MSGm = 0x00; /* end with writing to data byte 0! */

• After resetting the bits RES and IM, the initialization of the device is completed.

MOD = 0x00; /* end initialization */

/*   0   0   0   0     0   0   0   0     */
/* ADE  RS  TC  TWL   RWL BS  RES  IM    */



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 59 of 63 AP2900  06.97

5.5.2 The Transmission of a Data Frame / Remote Frame with the SAE 81C90/91

• To transmit a Data Frame , make sure that you have configured a message object "n" (e.g. MO
1) that handles Data Frames (RTR = 0) and that carries the right identifier and the right DLC.
Then the data bytes (1 to 8 depending on the configuration in descriptor byte 0) can be loaded
with the desired message (DLC = 4 here):

BYTE3MSGn = 0x33; /* load data byte 3 obj.n with 33h */
BYTE2MSGn = 0x22; /* load data byte 2 obj.n with 22h */
BYTE1MSGn = 0x11; /* load data byte 1 obj.n with 11h */
BYTE0MSGn = 0x00; /* load data byte 0 obj.n with 00h */

Please take care that writing must end with data byte 0 as mentioned in the previous section
about the initialization of the device.

• The message is transmitted by setting the bit that corresponds to message object n in the
registers TRSR1 (messages 0 - 7) or TRSR2 (messages 8 - 15), resp.:

TRSRy = 0xdd; /* send mess.; y = 1..2; dd = 01h..FFh */

/*   ?     ?     ?     ?     ?     ?    ?    ?  < Reg. TRSR1 */
/* TRS7  TRS6  TRS5  TRS4  TRS3  TRS2  TRS1 TRS0            */

/*   ?     ?     ?     ?     ?     ?    ?    ?  < Reg. TRSR2 */
/* TRS15 TRS14 TRS13 TRS12 TRS11 TRS10 TRS9 TRS8           */

Several bits may be set simultaneously which results in the transmission of all selected
messages. The message with the highest message object number (e.g. message object 15, if
selected) is sent first. Message object 0 is transmitted at last.

• To transmit a Remote Frame , make sure that you have configured a message object "n" (e.g.
MO 2) that handles Remote Frames (RTR = 1) and that carries the right identifier and "0" in the
DLC. Like the Data Frame, the Remote Frame is transmitted by setting the bit that corresponds
to message object n in the registers TRSR1 (messages 0 - 7) or TRSR2 (messages 8 - 15),
respectively. Several bits may be set simultaneously which results in the transmission of all
selected messages starting with the one with the highest message index.

 
• Please note that the corresponding Data Frame is not stored into this message object n from

which the Remote Frame was sent. Another message object configured to handle Data
Frames (RTR=0) is needed.

A possibility to avoid this:

• Configure a message object "n" that handles Remote Frames (RTR = 1) and that carries the
right identifier and "0" in the DLC.

• Transmit the Remote Frame.
• Wait until bit TC in the MOD register is set on the successful transmission of the frame.
• Now change bit RTR in the descriptor bytes to zero and adjust the DLC.
• When now the corresponding Data Frame arrives, it will be stored in this message object

(as long as there's no other message object with RTR=0, the same identifier, and a higher
message object priority).



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 60 of 63 AP2900  06.97

You have to make sure, though, that the reprogramming of the RTR bit is done before the
corresponding Data Frame is transmitted. Be also aware of the fact that the requested Data
Frame is not necessarily the frame that directly follows the transmitted Remote Frame.

5.5.3 Evaluation of a received Message with the SAE 81C90/91

• If the SAE 81C90/91 receives a Remote Frame  with an identifier that matches with the
identifier of a message object configured to handle Remote Frames (RTR=1), then the DLC,
the data bytes and the identifier remain unchanged. The Remote Frame is automatically
answered with the corresponding Data Frame.

 
• If the SAE 81C90/91 receives a Data Frame  with an identifier that matches with the identifier

of a message object configured to handle Data Frames (RTR=0), then the data bytes in the
Data Field are copied into the data bytes of this message object. The DLC is updated while
The RTR bit and the identifier remain unchanged. The device sets the corresponding receive-
ready bit in the RRx register and bit RI in the register INT and generates an interrupt to the
host controller (if enabled). The interrupt service routine then first has to read INT to determine
the reason for the interrupt.

 
• Then, via the Receive Ready Registers RRR1 and RRR2, the ISR can trace for which message

object new data has been received (eg. MO 5).

{
if ((INT & 0x01) != 0)

/* if bit INT.RI is set (= a mess. has been received) */

{
   if ((RRR1 & 0x20) != 0)
/* if message for object 5...*/

   {
/* now the data bytes can be read */

...

When accessing one of the data bytes MSGn0 to MSGn7, automatically all ather data bytes of
this message are moved to the shadow RAM and can be accessed.

• At last, the software should clear the corresponding bit in the Receive Ready Register
(RRR1.5 here):

RRR1 = 0xDF; /* clear bit RRR1.5 */

INT.RI will be cleared by the SAE 81C90/91 if all receive interrupts have been serviced and no
more receive-ready bits are set.



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 61 of 63 AP2900  06.97

5.6 How to use the Basic CAN Features of the CAN Module and the 
SAE 81C90/91

5.6.1 The Basic-CAN Feature of the CAN Module

The Basic-CAN Feature of the CAN module works with message object 15 in combination with
the "Mask of Last Message" Register(s). MO 15 is a double-buffered receive-only object. No
messages can be sent with this MO (this is prevented by hardware). It depends on the
configuration of Message Configuration Register 15 which kind of frames will be stored in MO 15:

• XTD = 0, DIR = 0: Standard Data Frames
• XTD = 0, DIR = 1: Standard Remote Frames
• XTD = 1, DIR = 0: Extended Data Frames
• XTD = 1, DIR = 1: Extended Remote Frames

It is therefore not possible to configure MO 15 to receive both Data Frames and Remote Frames!
The DLC and the contents of the Arbitration Registers is "don't care".

Which kind of identifiers will be stored in MO 15 depends on the configuration of the Mask of Last
Message (MOLM) and the Global Mask (GM). For the acceptance filtering of MO 15, the GM is
ANDed with the MOLM. Identifier bits that are set to "0" in one of these masks will be treated as
"don't care". If all identifiers that cannot be stored in any other MO shall be received in MO 15 (=
Basic-CAN receive register), then all identifier bits in the MOLM should be set to "0".

Example for standard frames:

Global Mask Short: 1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1
ANDed with & & & &  & & & &  & & & &  & & & &
Upper Mask of | | | |  | | | |  | | | |  | | | |
Last Message : 0 0 0 x  x x x x  0 0 0 0  0 0 0 0
=> bits to be masked | | | |  | | | |  | | | |  | | | |
(to be "don't care" (d)): d d d -  - - - -  d d d d  d d d d

| | | |  | | | |  | | | |  | | | |
Upper Arbitration | | | |  | | | |  | | | |  | | | |
Register of MO 15: x x x x  x x x x  x x x x  x x x x

| | | |  | | | |  | | | |  | | | |
Identifiers stored: d d d x  x x x x  d d d d  d d d d

= Identifiers ddddddddddd (00000000000 .. 11111111111)

Scenario for MO 15:

Assumptions:
• SIE = 0, IE = 1 (Control Register)
• RXIE = set (Message Control Register 15)

1.) If a frame arrives that fits into MO 15 (and in none of the other objects), the identifier and (in
case of a Data Frame) the data bytes are stored into one of the two buffers of MO 15:



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 62 of 63 AP2900  06.97

• If Buffer1 = released and Buffer2 = released: store into Buffer1.
• If Buffer1 = allocated and Buffer2 = released: store into Buffer2.
• If Buffer1 = released and Buffer2 = allocated: store into Buffer1.
• If Buffer1 = allocated and Buffer2 = allocated: store into the buffer that was filled with the

previous data; set MSGLST.
 
 2.) The CAN controller then sets
 
• INTPND and NEWDAT

(if MO 15 is configured to receive Data Frames (DIR = 0)) or
• INTPND and RMTPND

(if MO 15 is configured to receive Remote Frames (DIR = 1))

in MO 15 and bit RXOK in the Control Register.

3.) An interrupt is generated to the CPU. Now the CPU can read the interrupt register and will
detect "02" (message 15 Interrupt).

4.) Now the CPU can read (and store elsewhere if necessary)

• the identifier of the received frame (via access to the Arbitration Registers),
• additionally the new data bytes (if a Data Frame was received and the identifier tells the CPU

that the received data has to be evaluated).

and then reset in MO 15 (the momentarily accessed buffer):

• INTPND and NEWDAT (if a Data Frame was received)
• INTPND, NEWDAT and RMTPND (if a Remote Frame was received).

This will release the momentarily accessed buffer.

5.) The CPU now has to check INTID in the interrupt register again.

• If INTID is no longer "02" but has been updated by the CAN controller to "00" or an other value,
both buffers of MO 15 are released.

• If INTID is still "02", then the other buffer of MO15 is still allocated. The CPU then has to
continue with step 4, then automatically accessing the other (still allocated) buffer.

 
6.) Steps 4 and 5 are to be repeated until both buffers are released.

7.) If both buffers of MO 15 are released and no other interrupt is pending, INTID should then
have the value 00h. The interrupt service routine can be left.
Otherwise (if INTID <> 0), the pending interrupt sources have to be serviced until INTID is 00h.

8.) If a Remote Frame was received and is to be answered by this node, this can be done by
loading a transmit object with the identifier of the received Remote Frame and the requested
data. Then this object must be transmitted.



Connecting C166 and C500
Microcontrollers to CAN

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

Semiconductor Group 63 of 63 AP2900  06.97

5.6.2 The Monitor Mode of the SAE 81C90/91

The Monitor Mode of the SAE 81C90/91 works with message object 0 and is enabled by setting
bit MM in the CTRL Register (CTRL.0) to "1" (otherwise MO 0 responds like all other MOs). Now
MO 0 receives all identifiers that are not accepted by other memory locations, which corresponds
to a Basic-CAN receive register. The identifier, the data length code and the RTR-bit in the
descriptor bytes of MO 0 are "don't care".

If a Data Frame  arrives (that does not match with one of the other MOs (1..15)), the Data Frame
is stored in MO 0:

• The descriptor bytes are updated with the identifier and the data length code (DLC) of the Data
Frame. The RTR bit is set to 0.

• The data bytes of MO 0 are overwritten by the data bytes of the Data Frame.
• Bit RR0 in Receive Ready Register 1 (RRR1) is set.
• If bit ERI in the IMSK register and bit RIM0 in the RIMR1 register both are set, an interrupt is

generated.

If a Remote Frame arrives2 (that does not match with one of the other MOs (1..15)), the Remote
Frame is stored in MO 0:

• The descriptor bytes are updated with the identifier and the data length code (DLC) of the
Remote Frame (= 0). The RTR bit is set to 1.

• The data bytes of MO 0 are not overwritten by the Remote Frame because the Remote Frame
contains no data bytes.

• Bit RR0 in Receive Ready Register 1 (RRR1) is set.
• If bit ERI in the IMSK register and bit RIM0 in the register RIMR1 both are set, an interrupt is

generated.

Note:
Bit RRP0 in the Remote Request Pending Register and bit RFI in the Interrupt Register are not
set (as it is normally done when a Remote Frame has been received).

Remote frames received in MO 0 in Monitor Mode should be read out by the CPU (identifier) and
if necessary should be answered by another MO configured for the transmission of Data Frames.

Please note that in Monitor Mode, MO 0 acts like a Basic CAN receive register. You shouldn't
transmit messages with MO 0 if the Monitor Mode is enabled (although it is still possible).

                                               
2 Please note: The D13 Step of the SAE 81C90/91 is not yet able to receive Remote Frames in Monitor Mode


