IDT74LVC821A

3.3V CMOS 10-BIT BUS-INTERFACE FLIP-FLOP WITH 3-STATE OUTPUTS AND 5 VOLT TOLERANT I/O

FEATURES:

- 0.5 MICRON CMOS Technology
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4µ W typ. static)
- · Rail-to-rail output swing for increased noise margin
- All inputs, outputs, and I/O are 5V tolerant
- · Supports hot insertion
- · Available in SOIC, SSOP, QSOP, and TSSOP packages

DRIVE FEATURES:

- High Output Drivers: ±24mA
- · Reduced system switching noise

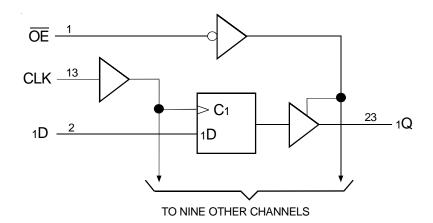
APPLICATIONS:

- 3.3V high speed systems
- · 3.3V and lower voltage computing systems

DESCRIPTION:

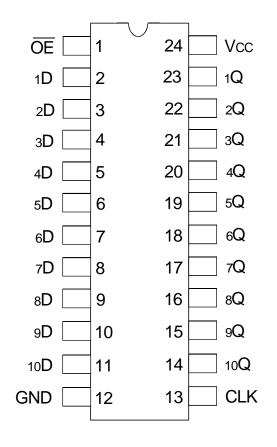
The LVC821A 10-bit bus-interface flip-flop is built using advanced dual metal CMOS technology. The LVC821A device features 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing wider buffer registers, I/O ports, bidirectional bus drivers with parity, and working registers.

The ten flip-flops are edge-triggered D-type flip-flops. On the positive transition of the clock (CLK) input, the device provides true data at the Q outputs.


A buffered output-enable (\overline{OE}) input can be used to place the ten outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components. \overline{OE} does not affect the internal operations of the latch. Previously stored data can be retained or new data can be entered while the outputs are in the highimpedance state.

The LVC821A has been designed with a \pm 24mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to Vcc through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.


Inputs can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V system environment.

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

PINCONFIGURATION

SOIC/ SSOP/ QSOP/ TSSOP TOP VIEW

INDUSTRIALTEMPERATURERANGE

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +6.5	V
Tstg	Storage Temperature	–65 to +150	°C
Ιουτ	DC Output Current	-50 to +50	mA
Іік Іок	Continuous Clamp Current, VI < 0 or Vo < 0	-50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
Cin	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	5.5	8	pF
Ci/o	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description	
хD	Data Inputs	
хQ	Data Outputs	
CLK	Clock Input	
ŌĒ	Output Enable Inputs (Active LOW)	

FUNCTION TABLE (EACH FLIP-FLOP)⁽¹⁾

		,	,
	Inputs		Outputs
хD	CLK	ŌĒ	xQ
Н	\uparrow	L	Н
L	\uparrow	L	L
Х	H or L	L	Q ⁽²⁾
Х	Х	H	Z

NOTES:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Z = High Impedance $\uparrow = LOW-to-HIGH transition$

2. Output level before LOW-to-HIGH clock transition.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Te	st Conditions	Min.	Тур. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
Vil	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	-	0.7	V
		Vcc = 2.7V to 3.6V		—	—	0.8	
lih lil	Input Leakage Current	Vcc = 3.6V	Vı = 0 to 5.5V	-	-	±5	μA
lozн lozl	High Impedance Output Current (3-State Output pins)	VCC = 3.6V	Vo = 0 to 5.5V	-	_	±10	μA
IOFF	Input/Output Power Off Leakage	Vcc = 0V, VIN or Vo ≤ 5.5 V		_	-	±50	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = -18mA		_	-0.7	-1.2	V
Vн	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL ICCH	Quiescent Power Supply Current	VCC = 3.6V	VIN = GND or Vcc	-	-	10	μA
lccz			$3.6 \le VIN \le 5.5V^{(2)}$	—	—	10	
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, o	other inputs at Vcc or GND	-	-	500	μA

NOTES:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	TestCor	Test Conditions ⁽¹⁾		Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = - 0.1mA	Vcc-0.2	_	V
		Vcc = 2.3V	Iон = - 6mA	2	_	
		Vcc = 2.3V	Іон = – 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		VCC = 3V	1	2.4	—	
		Vcc = 3V	Iон = - 24mA	2.2	—	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	—	0.2	V
		Vcc = 2.3V	Iol = 6mA	_	0.4	
			Iol = 12mA	_	0.7	
		Vcc = 2.7V	Iol = 12mA	_	0.4	
		VCC = 3V	IOL = 24mA	_	0.55	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to + 85°C.

INDUSTRIALTEMPERATURERANGE

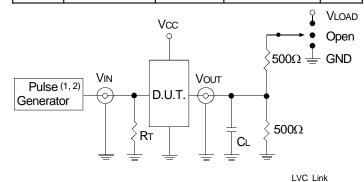
OPERATING CHARACTERISTICS, Vcc = 3.3V ± 0.3V, TA = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
Cpd	Power Dissipation Capacitance per Flip-Flop Outputs enabled	CL = 0pF, f = 10Mhz	65	pF
Cpd	Power Dissipation Capacitance per Flip-Flop Outputs disabled		48	

SWITCHING CHARACTERISTICS⁽¹⁾

		Vcc =	: 2.7V	Vcc = 3.3	V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
fMAX		150	_	150	_	MHz
t PLH	Propagation Delay	_	8.5	2.2	7.3	ns
t PHL	CLK to xQ					
tPZL	Output Enable Time	_	8.8	1.3	7.6	ns
tрzн	OE to Qx					
tPLZ	Output Disable Time	_	6.8	1.6	6.2	ns
t PHZ	OE to Qx					
tw	Pulse Duration, CLK HIGH or LOW	3.3	_	3.3	_	ns
tsu	Set-up Time, data before CLK	1.9	_	1.9	_	ns
ħ	Hold Time, data after CLK	1.5	_	1.5	—	ns
tsk(o)	Output Skew ⁽²⁾	_	_	_	500	ps

NOTES:


1. See TEST CIRCUITS AND WAVEFORMS. TA = -40° C to $+85^{\circ}$ C.

2. Skew between any two outputs of the same package and switching in the same direction.

IDT74LVC821A 3.3V CMOS10-BIT BUSINTERFACE FLIP-FLOP

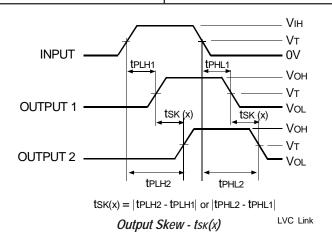
TEST CIRCUITS AND WAVEFORMS

Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	Vcc ⁽¹⁾ =2.7V	Vcc ⁽²⁾ =2.5V±0.2V	Unit	
Vload	6	6	2 x Vcc	V	
Vih	2.7	2.7	Vcc	V	
Vт	1.5	1.5	Vcc / 2	V	
Vlz	300	300	150	mV	
Vhz	300	300	150	mV	
CL	50	50	30	pF	

Test Circuit for All Outputs

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

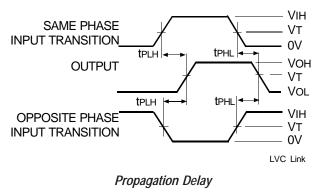

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

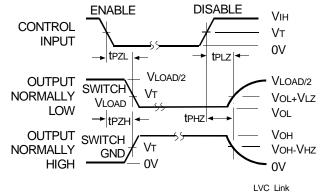
NOTES:

1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns. 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Vload
Disable High Enable High	GND
All Other Tests	Open

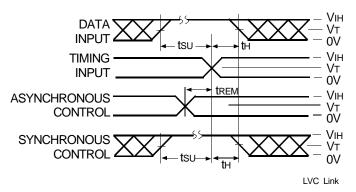



NOTES:

1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.

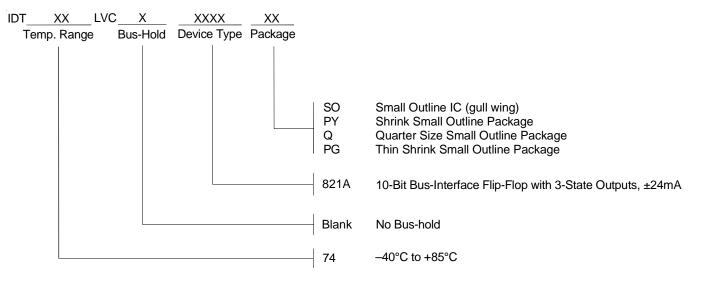
2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

INDUSTRIALTEMPERATURERANGE




Enable and Disable Times

NOTE:


1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Set-up, Hold, and Release Times

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 *for SALES:* 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com

for Tech Support: logichelp@idt.com (408) 654-6459