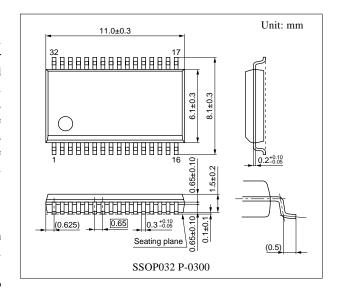
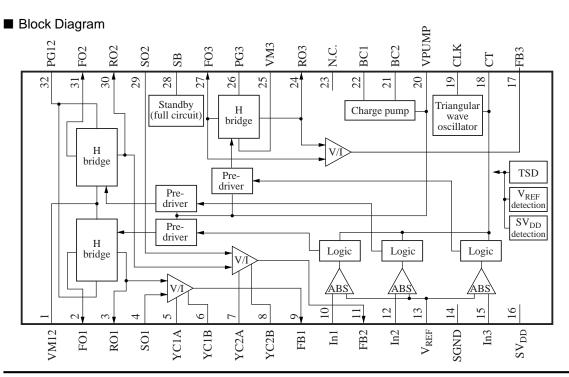
AN8497SA

3-channel linear input PWM driver IC

Overview


The AN8497SA is a PWM output 3-channel driver IC supporting linear inputs, and best suited for an actuator and a motor drive for CD-ROM and DVD-ROM. Due to its linear input, a conventional system can be used only by replacing a driver. And, due to an adoption of PWM output, you can reduce considerably power consumption compared with a conventional driver. Further a space saving surface mount package is adopted thanks to its low thermal generation.


■ Features

- Maximum 64% reduction of power consumption compared with a conventional linear 3-channel driver IC
- Free gain setting by an external resistor due to voltage feedback
- Standby function available (standby current < 20 μA)
- Only for supply voltage 5 V
- Phase compensation function

Applications

• Optical disk drive

■ Pin Descriptions

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	VM12	Channel 1, 2 power supply	17	FB3	Channel 3 feedback signal output pin
2	FO1	Channel 1 forward output pin	18	CT	Triangular wave output pin
3	RO1	Channel 1 reverse output pin	19	CLK	CLK synchronous pulse input pin
4	SO1	Channel 1 feedback signal input pin	20	VPUMP	Charge pump step-up voltage output
5	YC1A	Channel 1 feedback gain adjustment pin A	21	BC2	Charge pump capacitor connection pin 2
6	YC1B	Channel 1 feedback gain adjustment pin B	22	BC1	Charge pump capacitor connection pin 1
7	YC2A	Channel 2 feedback gain adjustment pin A	23	N.C.	N.C.
8	YC2B	Channel 2 feedback gain adjustment pin B	24	RO3	Channel 3 reverse output pin
9	FB1	Channel 1 feedback signal output pin	25	VM3	Channel 3 power supply
10	In1	Channel 1 driver input pin	26	PG3	Channel 3 power ground
11	FB2	Channel 2 feedback signal output pin	27	FO3	Channel 3 forward output pin
12	In2	Channel 2 driver input pin	28	SB	All shut off input pin
13	V _{REF}	Reference voltage input pin	29	SO2	Channel 2 feedback signal input pin
14	SGND	Control circuit ground	30	RO2	Channel 2 reverse output pin
15	In3	Channel 3 driver input pin	31	FO2	Channel 2 forward output pin
16	SV _{DD}	Control circuit power supply	32	PG12	Channel 1, 2 power supply

■ Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	
Supply voltage *2	SV_{DD}	6.0	V	
	V_{M12} , V_{M3}			
Supply voltage application range	SV_{DD}	- 0.3 to +6.0	V	
	V_{M12} , V_{M3}			
Drive output voltage *7	$V_{(m)}$	7.0	V	
Control signal input voltage *8	V _(n)	SGND to SV _{DD}	V	
Supply current *3	I_{SVDD}	200	mA	
	I _{VM12}	2 000		
	I _{VM3}	1 200		
Drive output current channel 1, 2 *5	I ₍₀₎	±1 000	mA	
Drive output current channel 3 *6	$I_{(p)}$	±1 200	mA	
Power dissipation *4	P_{D}	400	mW	
Operating ambient temperature *1	T_{opr}	-30 to +75	°C	
Storage temperature *1	T_{stg}	-55 to +150	°C	

Note) Do not apply external currents or voltages to any pins not specifically mentioned expect for the power supply and GND pins. For circuit currents, '+' denotes current flowing into the IC, and '-' denotes current flowing out of the IC.

^{*1:} Except for the operating ambient temperature and storage temperature, all ratings are for $T_a = 25$ °C.

^{*2:} The voltage in a step-up voltage circuit exceeds a supply voltage. Refer to "■ Electrical Characteristics" for an allowable value of a step-up voltage.

^{*3:} Use within 1 000 mA in each channel 1 and channel 2.

■ Absolute Maximum Ratings (continued)

Note) *4: Use within the range of not exceeding $P_D = 400$ mW without heat sink and at $T_a = 75$ °C in accordance with an allowable power dissipation characteristic curve of " \blacksquare Application Note".

*5: o = 2, 3, 30, 31

*6: p = 24, 27

*7: m = 2, 3, 4, 24, 27, 29, 30, 31

*8: n = 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 18, 19, 22, 28

■ Recommended Operating Range

Parameter	Symbol	Range	Unit
Supply voltage	SV_{DD}	4.5 to 5.0 to 5.5	V
	V_{M12} , V_{M3}	3.5 to 5.0 to 5.5	

■ Electrical Characteristics at $SV_{DD} = V_{M12} = V_{M3} = 5 \text{ V}$, $V_{REF} = 1.65 \text{ V}$, SB = 3.3 V, $R_L = 8 \Omega$, $T_a = 25^{\circ}C$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Power supply current at standby	I_{VMS}	SB = "L"	_	_	10	μΑ	
Control supply current at standby	I _{SVS}	$SB = "L", V_{REF} = 0 V$	_	_	10	μΑ	
Control supply current at no input	I _{SVA}	SB = "H"	_	5	10	mA	
Charge pump							
Output voltage	V _{PMP}	$I_{PMP} = 0 \text{ mA}$	7.0	8.4	9.8	V	
Current output capability	V _{PMPL}	$I_{PMP} = -1 \text{ mA}$	5.9	7.3	8.7	V	
Triangular wave generation circui	t						
Sink current	I _{CTSN}	$V_{CT} = 1.6 \text{ V}$	133	153	173	μΑ	
Source current	I _{CTSR}	$V_{CT} = 0.1 \text{ V}$	37	44	51	μΑ	
Self-running oscillation frequency	f_{TR}	$C_{CT} = 100 \text{ pF}$	175	200	225	kHz	
Driver block							
Channel 1, 2 output on resistance (upper/lower)	R_{ON1} , R_{ON2}	$R_L = 8 \Omega$	_	1.4	2.3	Ω	
Channel 3 output on resistance (upper/lower)	R _{ON3}	$R_L = 8 \Omega$	_	0.8	1.6	Ω	
Output offset voltage	V_{OS}	_	-50	_	50	mV	
Voltage gain "+"	G	_	12.0	14.0	16.0	dB	
"+" / "–" relative gain	G_R	_	-1.5	_	1.5	dB	
Dead zone converted to input	V_{DZ}	_	0	10	30	mV	
SV _{DD} reset			•				
Reset supply voltage	V _{RESH}	_	4.5	_	_	V	
V _{REF} reset							
High-level input voltage	V _{RRH}	_	1.35	_	_	V	
Low-level input voltage	V _{RRL}	_	_	_	0.7	V	
Standby operation							
High-level input voltage	V _{SBH}	_	2.7	_	_	V	
Low-level input voltage	V _{SBL}			_	0.8	V	

■ Electrical Characteristics at $SV_{DD} = V_{M12} = V_{M3} = 5 \text{ V}$, $V_{REF} = 1.65 \text{ V}$, SB = 3.3 V, $R_L = 8 \Omega$, $T_a = 25^{\circ}C$ (continued)

• Design reference data

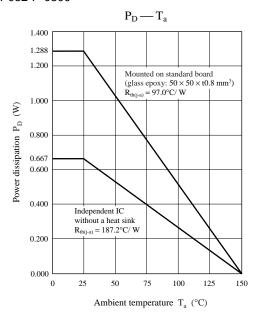
Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Thermal protection							
Thermal protection operating temperature	T_{TSD}	_	_	160		°C	
Thermal protection hysteresis width	ΔT_{TSD}	_	_	40	_	°C	
SV _{DD} reset							
Hysteresis width	ΔV_{RES}	_	_	0.2	_	V	

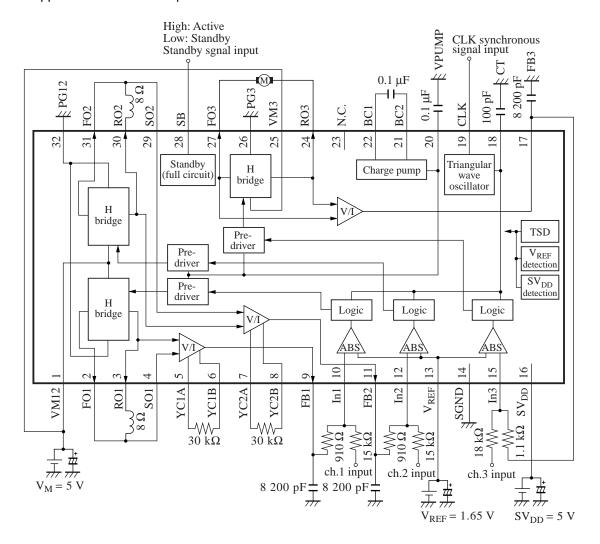
■ Usage Notes

- 1. Be sure to use SV_{DD} in the highest potential within the IC.
- 2. Standby operation, reset operation
 - Pin 28 is a standby switch input pin.

You can get an active mode with high-level and standby mode with low-level. In a reset operation, all the functions of the IC stop. In a reset mode (SV_{DD} reset, V_{REF} reset and thermal protection on), only a charge pump operates.


- 3. Power on and off be done in a standby mode (V_{SB} : Low).
- 4. Do not use pin 13 (V_{REF}) in an open state.
- 5. Take time to check the characteristics on use.

When changing an external circuit constant for use, consider not only static characteristics, but also transient characteristics and external parts with respect to the characteristics difference among ICs so that you can get enough margin.


- Keep each output pin from being short-circuited to SV_{DD} or VM or GND (line-to-supply and line-to-ground fault)
 and also between themselves (load short-circuit). Otherwise the IC will be damaged and is likely to get fired.
- 7. Be cautious on a dip soldering. Prior study is required.

■ Application Note

• P_D — T_a curves of SSOP032-P-0300

■ Application Circuit Example

Request for your special attention and precautions in using the technical information and semiconductors described in this material

- (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
- (2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.
- (3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this material are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products.
- (6) When using products for which dry packing is required, observe the conditions (including shelf life and after-unpacking standby time) agreed upon when specification sheets are individually exchanged.
- (7) No part of this material may be reprinted or reproduced by any means without written permission from our company.

Please read the following notes before using the datasheets

- A. These materials are intended as a reference to assist customers with the selection of Panasonic semiconductor products best suited to their applications.
 - Due to modification or other reasons, any information contained in this material, such as available product types, technical data, and so on, is subject to change without notice.
 - Customers are advised to contact our semiconductor sales office and obtain the latest information before starting precise technical research and/or purchasing activities.
- B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but there is always the possibility that further rectifications will be required in the future. Therefore, Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material.
- C. These materials are solely intended for a customer's individual use. Therefore, without the prior written approval of Panasonic, any other use such as reproducing, selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited.