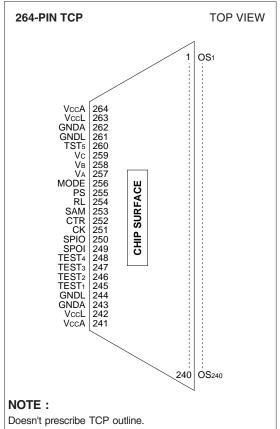
LH1687

DESCRIPTION

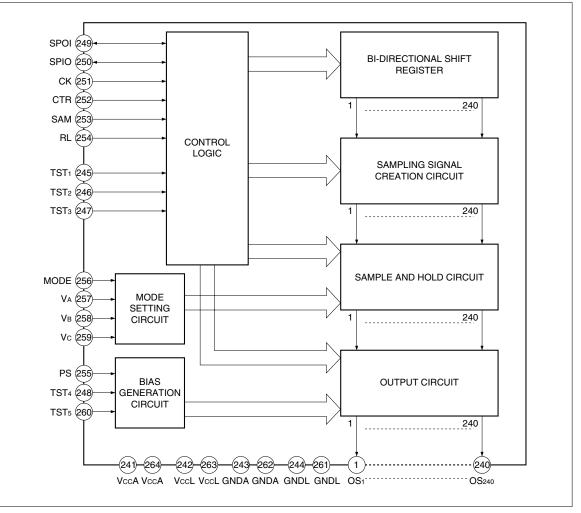

The LH1687 is a 240-output TFT-LCD source driver IC used in such products as TV sets. The LH1687 samples and holds three video signals of R, G and B by sample and hold circuits synchronized with the CK, and simultaneously outputs the LCD drive voltage from all output pins.

FEATURES

- Number of LCD drive outputs : 240
- Output circuit form : Push pull output
- Power save function : By setting the LCD drive output in a high-impedance condition, the current source of the LCD drive output circuit is cut off, which makes low power operation possible
- Sampling timing : Normal sampling operation and 3-point simultaneous sampling operation can be selected
- Video signal setting : Available for stripe pixel array panels and delta pixel array panels using mode setting circuit
- Sampling clock frequency : 25 MHz (MAX.)
- Cascade connection
- Sampling sequence : Output shift direction can be selected OS1→OS240 or OS240→OS1
- Output amplitude voltage :
 4.8 Vp-p (at 5.0 V supply voltage)
- Supply voltages
 - VccL (for logic system) : +3.0 to +5.5 V
 - VccA (for LCD drive system) : +3.0 to +5.5 V
- Operating temperature : -30 to + 85 °C
- Package : 264-pin TCP (Tape Carrier Package)

240-output TFT-LCD Source Driver IC

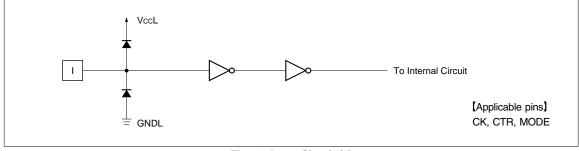
PIN CONNECTIONS



In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.

PIN DESCRIPTION

PIN NO.	SYMBOL	I/O	DESCRIPTION
1 to 240	OS1-OS240	0	LCD drive output pins
241, 264	VccA	-	Power supply pins for LCD drive circuit
242, 263	VccL	-	Power supply pins for logic circuit
243, 262	GNDA	_	Ground pins for LCD drive system
244, 261	GNDL	_	Ground pins for logic system
245 to 248	TST1-TST4	I	IC test pins
249	SPOI	I/O	Start pulse input/cascade output pin
250	SPIO	I/O	Start pulse input/cascade output pin
251	СК	I	Horizontal shift clock input pin
252	CTR	I	LCD drive circuit operation selection pin
253	SAM	I	Sampling mode selection pin
254	RL	I	Sampling sequence selection pin
255	PS	I	Power save mode setting pin
256	MODE	I	Video signals form setting pin
257 to 259	Va, Vb, Vc	I	Video signal input pins
260	TST₅	I	IC test pin


BLOCK DIAGRAM

FUNCTIONAL OPERATIONS OF EACH BLOCK

BLOCK	FUNCTION				
Control Logic	Used to create signals necessary for each operation mode setting and sampling signal				
	creation circuits, etc.				
Bi-directional Shift	Used as transfer circuit of video sampling start signals.				
	It is possible to set the direction of sampling start signal sequence OS1→OS240 or				
Register	OS₂₄0→OS1 by setting the R/L pin.				
Sampling Signal	Used to create the sampling signals corresponding to each output pin based on the				
Creation Circuit	sampling start signals transferred by the bi-directional shift register.				
Mode Setting Circuit	Used to set the form of the video signals to be sent to the sample and hold circuits.				
Sample and Hold	Used to sample the video signals input from the mode setting circuit at the timing of the				
Circuit	sampling signals and hold the sampling data until the next sampling operation.				
Bias Generation Circuit	Used to generate bias voltage necessary for output circuits.				
Outout Circuit	The circuit consists of a push-pull output operational amplifier and outputs the voltage				
Output Circuit	corresponding to the data held in the sample and hold circuits.				

INPUT/OUTPUT CIRCUITS

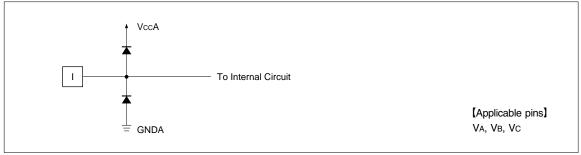
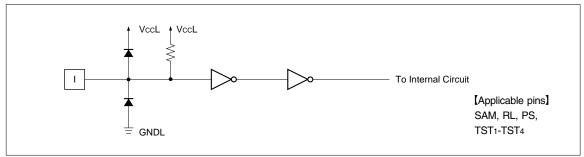



Fig. 2 Input Circuit (2)

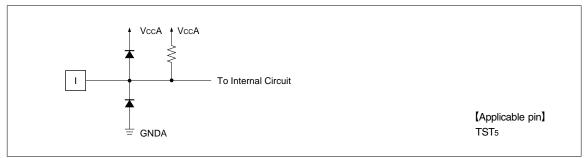
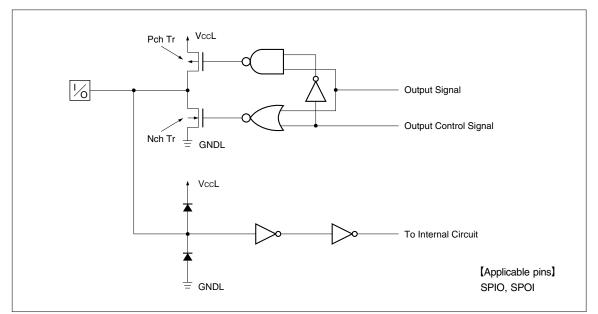



Fig. 4 Input Circuit (4)

Fig. 5 Input/Output Circuit

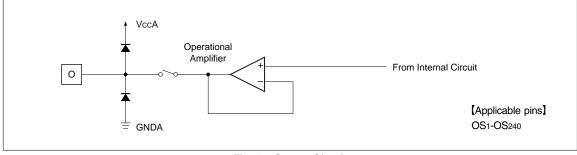
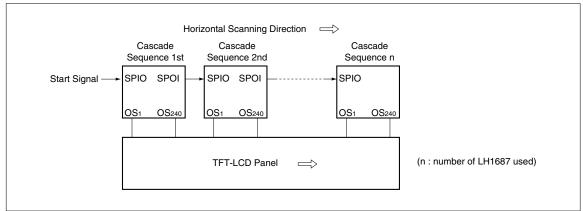


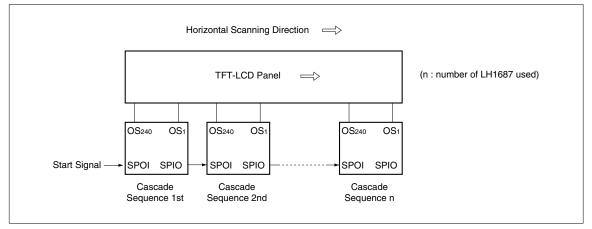
Fig. 6 Output Circuit

FUNCTIONAL DESCRIPTION

Pin Functions

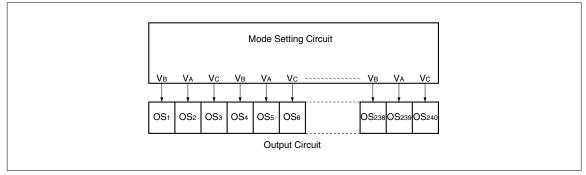

SYMBOL	FUNCTION
VccL	Used as power supply pin for logic circuit, connected to +3.0 to +5.0 V.
VccA	Used as power supply pin for LCD drive circuit, connected to +3.0 to +5.0 V.
VCCA	Must be set to VccL \leq VccA.
GNDL	Used as ground pin for logic circuit, connected to 0 V.
GNDA	Used as ground pin for LCD drive circuit, connected to 0 V.
TST1-TST4	Used as input pins for IC testing, connected to VccL (high level).
TST₅	Used as input pins for IC testing, connected to VccA (high level).
	Used as input/output pins of cascade operation start signal.
SPIO	SPIO becomes input pin of operation start signal and SPOI becomes output pin of
SPOI	operation start signal of next IC when set to R/L = "H".
3501	SPOI becomes input pin of operation start signal and SPIO becomes output pin of
	operation start signal of next IC when set to $R/L = "L"$.
СК	Used as horizontal shift clock input pin.
UK .	Video signals are sampled in order at the rising and falling edge of CK.
CTR	Used as input pin of selecting video signal sampling circuits and selecting input signal of
OIN	output operational amplifiers.
	Used as input pin for setting the selecting of normal sampling operation or 3-point
	simultaneous sampling operation.
	For normal sampling operation, video signals are sampled into sample and hold circuits
	every 1 LCD drive output.
SAM	For 3-point simultaneous sampling operation, video signals are sampled into sample and
	hold circuits every 3 LCD drive outputs simultaneously.
	For either operation, sampling signals are shifted at every rising and falling edge of
	horizontal shift clock of CK pin (half clock), and their sampling period is equal to the period
	of one clock.

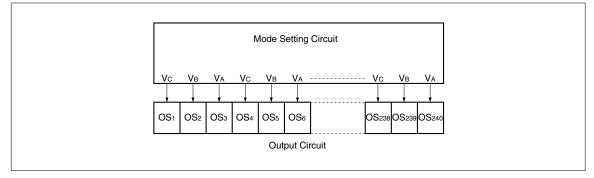
SYMBOL	FUNCTION
	Used as input pin for setting the shift direction of video signal sampling sequence and the
	selecting input/output of SPIO/SPOI pins.
RL	Video signals are sampled in order of OS1→OS240, set SPIO to input of operation start
	signal and set SPOI to output of operation start signal of next IC when set RL to "H".
	Video signals are sampled in order of OS₂40→OS1, set SPOI to input of operation start
	signal and set SPIO to output of operation start signal of next IC when set RL to "L".
	Used as input pin for setting of power save mode.
	LCD drive output pins output voltage corresponding to video signals held in the sample
PS	and hold circuits when set PS to "H".
	The LH1687 is set low power mode by setting high-impedance condition and cutting off
	current source of LCD drive outputs when set PS to "L".
	Used as input pin for setting video signals for sampling in the sample and hold circuits.
MODE	By mode setting circuit, video signals are sampled and output in order of VB, VA, and Vc
MODE	when set to "H" and in order of Vc, VB, and VA when set to "L" with respect to OS1 to
	OS240 .
VA	Used as input pins of video signals.
Vв	VB, VA, VC, VB, VA, VC or VC, VB, VA, VC, VB, VA are input with respect to LCD drive
Vc	outputs OS1, OS2, OS3, ··· OS238, OS239, OS240 by MODE pin setting condition.
	Used as LCD drive output pins.
OS1-OS240	Voltage corresponding to video signals held in the sample and hold circuits is output when
	set to PS = "H", and becomes high-impedance condition when set to PS = "L".


Functional Operations

(1) Examples of Cascade Sequence

When RL = "H"

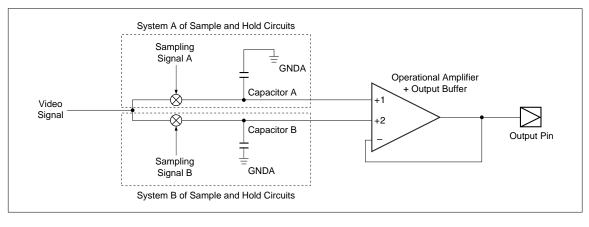

When RL = "L"


(2) Video Signal Mode Setting Function

With MODE pin condition, it is possible to set the form of video signals corresponding to each output pin by selecting the mode setting circuit.

When MODE = "H"

When MODE = "L"

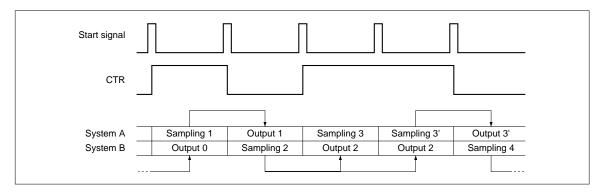

(3) Output Circuit Type

The LH1687 samples video signals by the sample and hold circuits of 2 systems and outputs the voltage corresponding to the sampled data by the input switching operational amplifiers with push-pull output buffer.

Sample and hold circuits and output circuits are as shown in the diagram below.

When CTR = "H", the LH1687 samples the data to system A of the sample and hold circuits and outputs the voltage corresponding to the voltage sampled by capacitor B of system B.

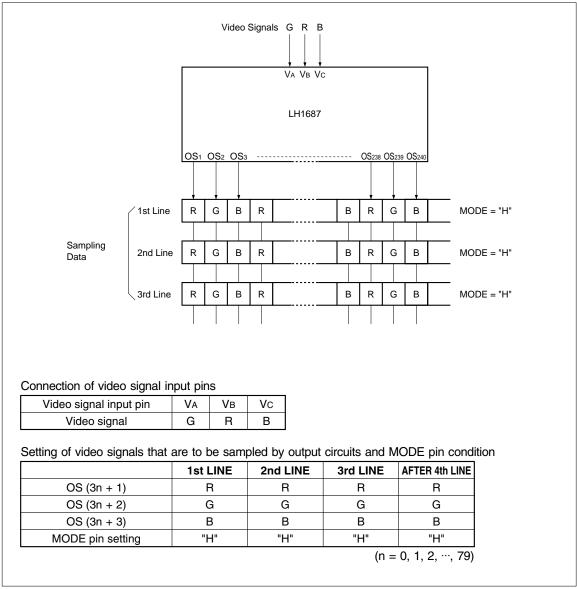
When CTR = "L", the LH1687 samples the data to system B of the sample and hold circuits and outputs the voltage corresponding to the voltage sampled by capacitor A of system A.

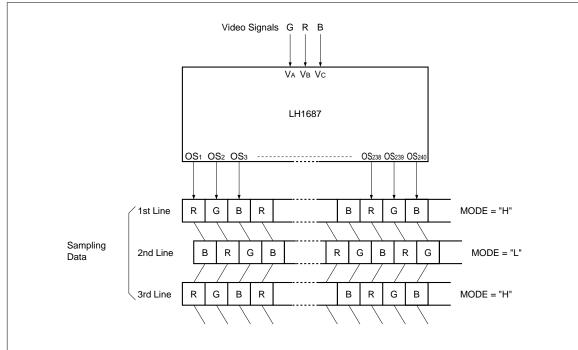


Therefore, it is usually necessary to repeat the sampling operation and output operation by exchanging CTR signal ("H" to "L" or "L" to "H") for every start signal.

While CTR signal is set to "H" or "L" several times

for start signal, the same voltage is output continuously.


The output voltage corresponds to the data sampled by the previous sampling operation. Timing of operation is as follows.


Also, there is a power save function which makes high-impedance of the output pin and a reduction in the current of operational amplifiers possible when set to PS = "L", but careful attention must be paid to the displaying quality etc. when using it. (4) Examples of LCD Panel Connection

With the video signal mode setting function of (2), it is possible to connect LCD panel to the stripe pixel array panel and delta pixel array panel as shown in the following examples.

(a) Example of Stripe Pixel Array Panel Connection

(b) Example of Delta Pixel Array Panel Connection

Connection of video signal input pins

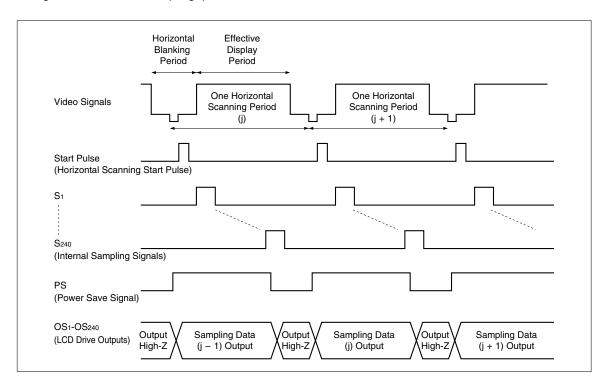
Video signal input pin	VA	Vв	Vc
Video signal	G	R	В

Setting of video signals that are to be sampled by output circuits and MODE pin condition

	1st LINE	2nd LINE	3rd LINE	AFTER 4th LINE
OS (3n + 1)	R	В	R	B and R are alternately selected.
OS (3n + 2)	G	R	G	R and G are alternately selected.
OS (3n + 3)	В	G	В	G and B are alternately selected.
MODE pin setting	"H"	"L"	"H"	"L" and "H" are alternately selected.

(n = 0, 1, 2, ..., 79)

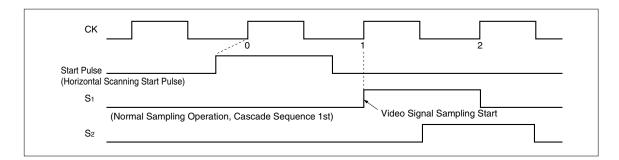
NOTES :


- Set the MODE pin condition during blanking period.
- Input the horizontal shift clock signal of CK pin by shifting the phase for each line according to the shift of the pixels connected to the same source bus line.

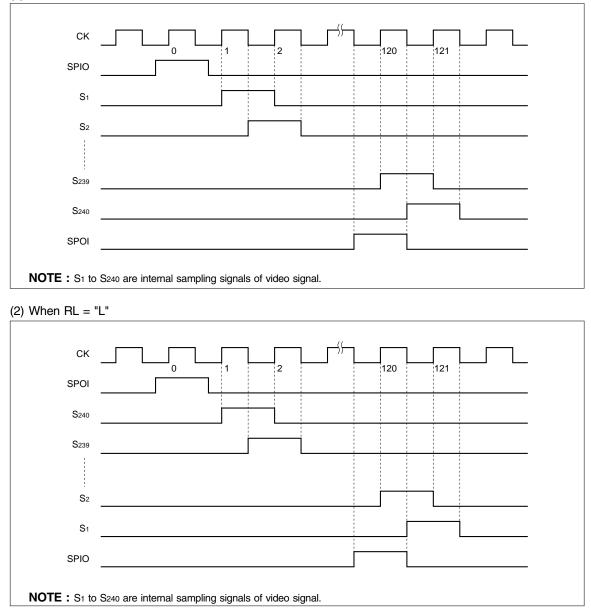
If the pixels connected to the same source bus line are shifted by half the pixels, change the clock phase 90 degrees. Clock phase must be changed during blanking period.

Outline of Operation Timing

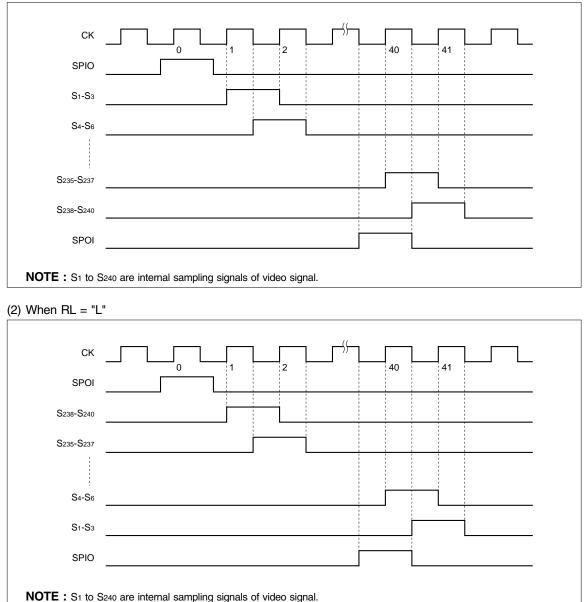
(1) Overall Operation Timing


Video signals of one horizontal scanning period are sampled into the sample and hold circuits at the timing of the internal sampling pulses of each output circuit, and data corresponding to the sampled data are output.

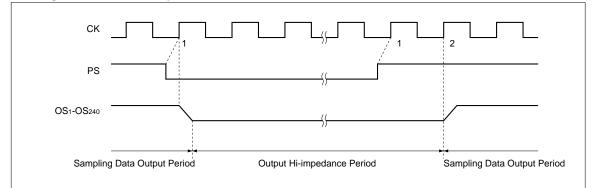
(2) Timing of Video Signal Sampling


If the normal sampling operation and cascade sequence is 1st, the video signal sampling (internal sampling signal Sn ($n = 1, 2, \dots, 240$)) is started at the

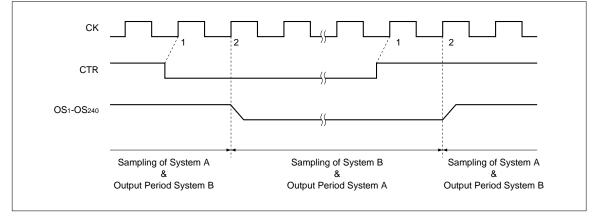
rising edge of first clock after falling edge of start pulse.


Timing Chart for Normal Sampling Operation

(1) When RL = "H"

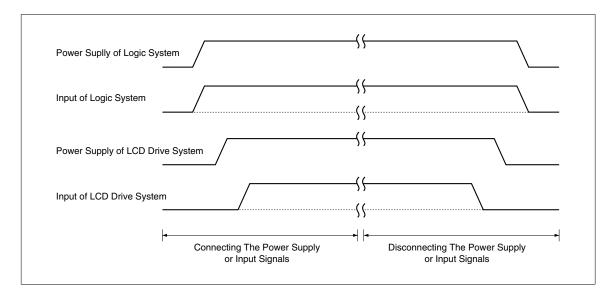


Timing Chart for 3-point Simultaneous Sampling Operation



Timing Chart for PS Operation

Timing Chart for CTR Operation


PRECAUTIONS

Precautions when connecting or disconnecting the power supply

This IC has some power supply pins, so it may be permanently damaged by a high current which may flow if voltage is supplied to the LCD drive power supply while the logic system power supply is floating. Therefore, when connecting the power supply, set the logic system input pins (SPIO, SPOI, CK, CTR, MODE, SAME, RL, PS, TST1, TST2, TST3, TST4) after supplying the voltage to the logic system power supply pin (VccL), and next supplying the voltage to the LCD drive system power supply pin (VccA). Finally, set the LCD drive system input pins (VA, VB, Vc, TST5).

When disconnecting the power supply, follow the reverse sequence.

When connecting or disconnecting the power supply follow the recommended sequence shown here.

Setting of Input pins

Since 5 pins of SPIO, SPOI, CK, CTR, and MODE of the input pins are not pulled up or pulled down in the IC, never use these 5 pins in the "OPEN" condition.

Since VA, VB, and Vc pins are for inputting video signals, necessary video signals must always be input.

Except for VA, VB, VC, SPIO, SPOI, CK, CTR, and MODE, all other input pins are pulled up in the IC. However, to preventing malfunction due to noise etc., avoid using the "OPEN" condition whenever possible, and set to "H" level or "L" level.

Input video signals

Input video signals are target for analog signals (continuous signals).

The input band of video signals is applicable up to the maximum of 12.5 MHz.

Bypass capacitor

If the noise of a logic system is superposed on analog circuits such as the sample and hold circuits, analog characteristics (such as output voltage deviation and dynamic range, etc.) may deteriorate. For this reason, insert bypass capacitors of about 1 μ F between VccL and GNDL, VccA and GNDA.

Fully evaluate and determine the value of bypass capacitors with them actually mounted on the LCD module.

Maximum ratings

When connecting or disconnecting the power supply, this IC must be used within the range of the absolute maximum ratings.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	APPLICABLE PINS	RATING	UNIT	NOTE
Supply voltage	VccL	VccL	-0.3 to +7.0	V	
Supply voltage	VccA	VccA	-0.3 to +7.0	V	
	VINL	CK, CTR, SPIO, SPOI, MODE,	-0.3 to VccL + 0.3	v	1, 2
Input voltage	VINL	RL, SAM, PS, TST1-TST4	-0.3 10 VCCL + 0.3		
	VINA	TST5, VA, VB, VC	-0.3 to VccA + 0.3	V	
Storage temperature	Tstg		-45 to +125	°C	

NOTES :

1. TA = +25 °C

2. The maximum applicable voltage on any pin with respect to GNDL and GNDA (0 V).

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	APPLICABLE PINS	RATING	UNIT	NOTE
Supply voltage	VccL	VccL	+3.0 to +5.5	V	
Supply voltage	VccA	VccA	+3.0 to +5.5	V	
	VINL	CK, CTR, SPIO, SPOI, MODE,	0 to VccL	V	1, 2
Input voltage	VINL	RL, SAM, PS, TST1-TST4	U IO VCCL		
	VINA	TST5, VA, VB, VC	0 to VccA	V	
Operating temperature	TOPR		-30 to +85	°C	

NOTES :

1. The applicable voltage on any pin with respect to GNDL and GNDA (0 V).

2. Ensure that voltages are set such that VccL \leq VccA.

ELECTRICAL CHARACTERISTICS

DC Characteristics

(Unless otherwise specified, GNDL = GNDA = 0 V, VccL = +3.3 V, VccA = +5.0 V, Topr = -30 to +85 °C)

PARAMETER	SYMBOL	CONDITIONS	APPLICABLE PINS	MIN.	TYP.	MAX.	UNIT.	NOTE
Input "Low" voltage	VIL		CK, CTR, SPIO, SPOI,	0		0.3VccL	V	
Input "High" voltage	VінL		MODE, RL, SAM, PS	0.7VccL		VccL	V	
Input voltage	VINA		VA, VB, VC	0		VccA	V	
	lu a		CK, CTR, SPIO, SPOI,			10		
Input "Low" current	IIL1	VIN = 0 V	MODE, VA, VB, VC			10	μA	
	lı∟2		RL, SAM, PS			400	μA	
	IнL	VIN = VCCL	CK, CTR, SPIO, SPOI,			10		
Input "High" current		VIN = VCCL	MODE, RL, SAM, PS			10	μA	
	ІнА	VIN = VCCA	VA, VB, VC			10	μA	
Dynamic range	Vp-p		VA, VB, VC	0.1		VccA - 0.1	V	
Deviations between	Vor		OS1-OS240	20		20	m\/	۲.
output voltage pins	Vod		051-05240	-20		20	mV	1
Supply current	ICCA1				6.0		mA	2
(In operation mode)	ICCAI		VacA		0.0		ШA	2
Supply current			VccA			100		3
(In power save mode)	ICCA2					100	μA	3
Supply current	IccL1		VccL		1.5		mA	2

NOTES :

1. Start signal :

Cycle tsp = 63.5 μ s, "H" period width twsp = 80 ns. CTR signal :

Cycle tctr = 127.0 μ s, "H" period width twctr = 63.5 μ s. Change from "H" to "L" or "L" to "H" is synchronized with start pulse during blanking period.

CK signal :

Frequency fck = 12.5 MHz (duty = 50%)

VA = VB = VC = 0.1 V to VCCA - 0.1 V

Connect all other pins to high level.

Voltage difference between the average voltage of all OS output pins in the chip and the output voltage of each OS output pin. TA = $25 \degree C$

2. Start signal :

Cycle tsp = 63.5 μ s, "H" period width twsp = 80 ns. CTR signal :

Cycle tcTR = 127.0 μ s, "H" period width twcTR = 63.5 μ s. Change from "H" to "L" or "L" to "H" is synchronized with start pulse during blanking period. CK signal :

Frequency $f_{CK} = 12.5 \text{ MHz}$ (duty = 50%) Connect VA, VB, and Vc pins to VccA. Connect all other pins to high level.

3. Start signal :

Cycle tsp = 63.5 $\mu s,$ "H" period width twsp = 80 ns. CTR signal :

Cycle tctr = 127.0 μ s, "H" period width twctr = 63.5 μ s. Change from "H" to "L" or "L" to "H" is synchronized with start pulse during blanking period.

CK signal :

Frequency fck = 12.5 MHz (duty = 50%)

Pin to be set to GND : PS

Connect VA, VB, and Vc pins to VccA.

Connect all other pins to high level.

AC Characteristics

(Unless otherwise sp	ecified,	GNDL = GNDA	= 0 V, VccL = +3.3 V,	VccA =	+5.0 V,	TOPR =	-30 to	+85 °C)
PARAMETER	SYMBOL	CONDITIONS	APPLICABLE PINS	MIN.	TYP.	MAX.	UNIT	NOTE
Clock froguenou	for	SAM = "H"				12.5	MHz	
Clock frequency	fCK	SAM = "L"				7.0	MHz	
"H" level clock width	twнc	SAM = "H"	СК	30.0			ns	
	IWHC	SAM = "L"	UK	50.0			ns	
"L" level clock width	twLC	SAM = "H"		30.0			ns	
	IVVLC	SAM = "L"		50.0			ns	
Input rise time	tRC	SAM = "H"				10.0	ns	
	INC	SAM = "L"	SPIO, SPOI, CK			20.0	ns	
Input fall time	tFC	SAM = "H"	3F10, 3F01, 0K			10.0	ns	
	IFC	SAM = "L"				20.0	ns	
Start pulse width	twsp		SPIO, SPOI	1 fcк			ns	
Start pulse setup time	tsusp			10.0			ns	
Start pulse hold time	tHSP		SPIO, SPOI, CK	15.0			ns	
Start pulse output delay time	tDSP	C∟ = 15 pF	3F10, 3F01, 0K			20.0	ns	
PS signal setup time	tsups		PS	<u>1</u> 2fск			μs	
CTR signal setup time	tSUCTR		CTR	<u>1</u> 2fск			μs	
Output transfer delay time	tDO					5.0	μs	
Output rise time	tR					5.0	μs	1
Output fall time	tF		OS1-OS240			5.0	μs	
Power save delay time	tDOP		031-03240			3.0	μs	
Power save rise time	trop					5.0	μs	2
Power save fall time	tFOP					5.0	μs	

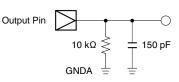
NOTES :

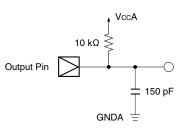
1. Start signal :

Cycle tsp = 63.5 μ s, "H" period width twsp = 80 ns. CTR signal :

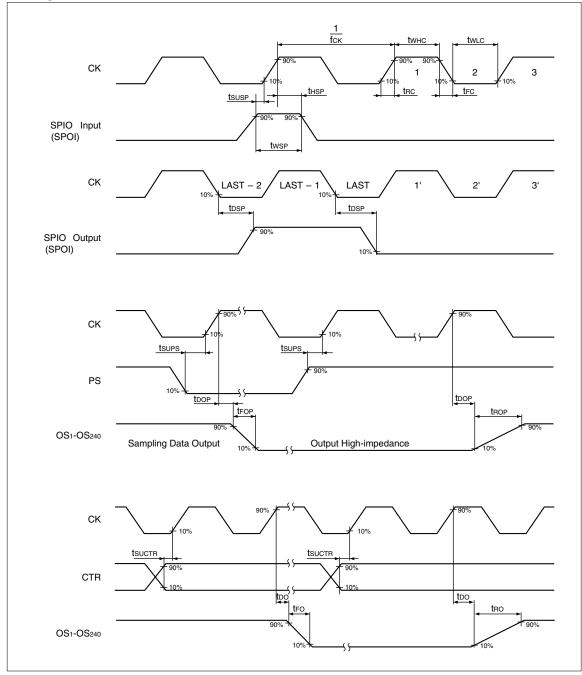
Cycle tctr = 127.0 μ s, "H" period width twctr = 63.5 μ s. Change from "H" to "L" or "L" to "H" is synchronized with start pulse during blanking period.

CK signal :


Frequency fck = 12.5 MHz (duty = 50%)


Connect VA, VB, and Vc pins to VccA.

Connect all other pins to VccL.


Capacity of output load CL = 150 pF

2. Add load resistor (10 k Ω) to NOTE 1. Load resistor is connected to GNDA or VccA level as follows.

Timing Chart

