

256K x 16 Static RAM

Features

- · High speed:
 - -55 ns and 70 ns availability
- · Voltage range:
 - CY62146CV30: 2.7V 3.3V
- Pin compatible with CY62146V
- · Ultra-low active power
 - Typical active current: 1.5 mA @ f = 1 MHz
 - Typical active current: 7 mA @ f = f_{max} (70 ns speed)
- Low standby power
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features
- · Automatic power-down when deselected
- · CMOS for optimum speed/power

Functional Description

The CY62146CV30 is a high-performance CMOS static RAM organized as 256K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL™) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly

reduces power consumption by 80% when addresses are not toggling. The device can also be put into standby mode reducing power consumption by 99% when deselected ($\overline{\text{CE}}$ HIGH). The input/output pins (I/O₀ – I/O₁₅) are placed in a high-impedance state when: deselected ($\overline{\text{CE}}$ HIGH), outputs are disabled ($\overline{\text{OE}}$ HIGH), both Byte High Enable and Byte Low Enable are disabled ($\overline{\text{BHE}}$, BLE HIGH), or during a Write operation ($\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW).

Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O $_0$ – I/O $_7$), is written into the location specified on the address pins (A $_0$ – A $_1$ 7). If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins (I/O $_8$ – I/O $_1$ 5) is written into the location specified on the address pins (A $_0$ – A $_1$ 7).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ – I/O₇. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the Truth Table on page 9 for a complete description of Read and Write modes.

The CY62146CV30 is available in 48-ball FBGA packaging.

FBGA (Top View) 1 6 NC OE A_2 BLE A_0 Α I/O₈ BHE A_3 CE I/Q_0 В 1/Q₉ 1/O₁₀ A_5 A_6 I/O₁ 1/02 С I/O₃ A_7 V_{SS} I/O₁₁ A₁₇ V_{cc} D 1/O₁₂ A₁₆ DNU I/O₄ Vcc Е 1/O₁₃ 1/014 F A₁₅ 1/Q₅ A₁₄ I/Q₆ A₁₂ 1/O₁₅ WE NC A_{13} I/O_7 G NC A_8 A_9 A_{10} A_{11} (NC Н

Product Portfolio

					Po	wer Dis	sipation	(Industri	al)			
Product		V _{CC} Range		V _{CC} Range		Speed		Operat	ing, I _{CC}		Sta	andby (L.)
Fioduct				Speeu	f = 1 MHz		f = f _{max}		Standby (I _{SB2})			
	V _{CC(min.)}	V _{CC(typ.)} ^[3]	V _{CC(max.)}		Typ. ^[3]	Max.	Typ. ^[3]	Max.	Typ . ^[3]	Max.		
CY62146CV30	2.7V	3.0V	3.3V	55 ns	1.5 mA	3 mA	12 mA	25 mA	7 uA	15 μΑ		
01021400730	2.7 \ 3.0 \ \		3.31	3.00		1.5 mA	3 mA	7 mA	15 mA	7 μΑ	15 μΑ	

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C

Ambient Temperature with Power Applied......–55°C to +125°C

Supply Voltage to Ground Potential...-0.5V to $V_{ccmax} + 0.5V$

DC Input Voltage ^[4]	-0.5V to V _{CC} + 0.5V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-Up Current	>200 mA

Operating Range

Device	Range	Ambient Temperature	V _{CC}
CY62146CV30	Industrial	-40°C to +85°C	2.7V to 3.3V

Notes:

NC pins are not connected to the die.
 E3 (DNU) can be left as NC or V_{SS} to ensure proper application.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

4. $V_{IL(min.)} = -2.0V$ for pulse durations less than 20 ns.

Electrical Characteristics Over the Operating Range

Parame-					-55			-70		
ter	Description	Test Con	Test Conditions		Typ. ^[3]	Max.	Min.	Typ. [3]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -1.0 \text{ mA}$	V _{CC} = 2.7V	2.4			2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1mA	V _{CC} = 2.7V			0.4			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} + 0.3V	1.8		V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage			-0.3		0.8	-0.3		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$		-1		+1	-1		+1	μΑ
I _{OZ}	Output Leakage Cur- rent	$GND \leq V_O \leq V_CC,$	$GND \le V_O \le V_{CC}$, Output Disabled			+1	– 1		+1	μΑ
	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = 3.3V$		12	25		7	15	
Icc	Current	f = 1 MHz	I _{OUT} = 0 mA CMOS Levels		1.5	3		1.5	3	mA
I _{SB1}	Automatic CE Pow- er-Down Current— CMOS Inputs	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.2\text{V}$ $\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2\text{V}$ or $\text{V}_{\text{IN}} \le 0.2\text{V}$, f = f _{max} (Address and Data Only), f=0 (OE,WE,BHE and BLE)			7	15		7	15	μА
I _{SB2}	Automatic CE Pow- er-Down Current— CMOS Inputs	$V_{\text{CC}} \ge V_{\text{CC}} - 0.2V$ $V_{\text{IN}} \ge V_{\text{CC}} - 0.2V$ or $V_{\text{IN}} \le 0.2V$, $V_{\text{IN}} \ge 0.2V$,								

Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ.)}$	8	pF

Thermal Resistance

Description	Test Conditions	Symbol	BGA	Units
Thermal Resistance (Junction to Ambient) ^[5]	Still Air, soldered on a 4.25 × 1.125 inch, four-layer printed circuit board	Θ_{JA}	55	°C/W
Thermal Resistance (Junction to Case) ^[5]		$\Theta_{\sf JC}$	16	°C/W

Note:

^{5.} Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Parameters	3.0V	Unit
R1	1.105	KOhms
R2	1.550	KOhms
R _{TH}	0.645	KOhms
V _{TH}	1.75V	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Typ. ^[3]	Max.	Unit
V_{DR}	V _{CC} for Data Retention		1.5		V _{ccmax}	V
I _{CCDR}	Data Retention Current	V_{CC} = 1.5V $CE \ge V_{CC} - 0.2V$, $V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$		3	10	μΑ
t _{CDR} ^[5]	Chip Deselect to Data Retention Time		0			ns
t _R ^[6]	Operation Recovery Time		t _{RC}			ns

Note:

^{6.} Full device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} > 100 \mu s$ or stable at $V_{CC(min.)} > 100 \mu s$.

Data Retention Waveform

Switching Characteristics Over the Operating Range^[7]

			55	-7		
Parameter	Description	Min	Max	Min	Max	Unit
READ CYCLE	•	1		•	•	•
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE LOW to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low Z ^[8]	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[8,10]		20		25	ns
t _{LZCE}	CE LOW to Low Z ^[8]	10		10		ns
t _{HZCE}	CE HIGH to High Z ^[8, 10]		20		25	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		55		70	ns
t _{DBE}	BHE / BLE LOW to Data Valid		25		35	ns
t _{LZBE} [9]	BHE / BLE LOW to Low Z	5		5		ns
t _{HZBE}	BHE / BLE HIGH to High Z		20		25	ns
WRITE CYCLE ^[11]		1	1			•
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE LOW to Write End	45		60		ns
t _{AW}	Address Set-Up to Write End	45		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	45		50		ns
t _{BW}	BHE / BLE Pulse Width	50		60		ns
t _{SD}	Data Set-Up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High Z ^[8, 10]		20		25	ns
t _{LZWE}	WE HIGH to Low Z ^[8]	5		5		ns
Notes:	•	1		1		

Test conditions assume signal transition time of 5 ns or less, timing reference levels of V_{CC(typ.)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance.

At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZOE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZOE}, t_{HZDE} for

any given device.

9. If both byte enables are toggled together, this value is 10 ns.

10. t_{HZOE}, t_{HZDE}, and t_{HZWE} transitions are measured when the <u>outputs</u> enter a high-impedance state.

11. The internal Write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE and/or BLE = V_{IL}. All signals must be ACTIVE to initiate a Write and any of these signals can terminate a Write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the Write.

Switching Waveforms

Read Cycle 1 (Address Transition Controlled) $^{[12,\ 13]}$

Read Cycle 2 (OE Controlled) [13, 14]

Notes:

- Device is continuously selected. OE, CE = V_{IL}, BHE, BLE = V_{IL}.
 WE is HIGH for Read cycle.
 Address valid prior to or coincident with CE, BHE, BLE transition LOW.

Switching Waveforms (continued)

Write Cycle 1 (WE Controlled) [11, 15, 16]

Write Cycle 2 (CE Controlled) [11, 15, 16]

Notes:

- 15. Data I/O is high-impedance if OE = V_{IH}.
 16. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
 17. During this period, the I/Os are in output state and input signals should not be applied.

Switching Waveforms (continued)

Write Cycle 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) [16]

Write Cycle 4 (BHE/BLE Controlled, OE LOW)[16]

Typical DC and AC Parameters

(Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ.)}$, $T_A = 25^{\circ}C$.)

Operating Current vs. Supply Voltage

Standby Current vs. Supply Voltage

Access Time vs. Supply Voltage

Truth Table

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Х	Х	Н	Н	High Z	Output Disabled	Active (I _{CC})
L	Н	L	L	L	Data Out (I/O _O – I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O _O – I/O ₇); I/O ₈ – I/O ₁₅ in High Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out ($I/O_8 - I/O_{15}$); $I/O_0 - I/O_7$ in High Z	Read	Active (I _{CC})
L	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O _O - I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O _O – I/O ₇); I/O ₈ – I/O ₁₅ in High Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ – I/O ₁₅); I/O ₀ – I/O ₇ in High Z	Write	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62146CV30LL-70BAI	BA48B	48-ball Fine Pitch BGA (7 mm × 8.5 mm × 1.2 mm)	Industrial
	CY62146CV30LL-70BVI	BV48A	48-ball Fine Pitch BGA (6 mm × 8 mm × 1 mm)	
55	CY62146CV30LL-55BAI	BA48B	48-ball Fine Pitch BGA (7 mm × 8.5 mm × 1.2 mm)	
	CY62146CV30LL-55BVI	BV48A	48-ball Fine Pitch BGA (6 mm × 8 mm × 1 mm)	

Package Diagrams

48-Ball (7.00 mm x 8.5 mm x 1.2 mm) Thin BGA BA48B

TOP VIEW

51-85106-*C

Document #: 38-05203 Rev. **

Package Diagrams (continued)

48-ball (6.0 mm × 8.0 mm × 1.0 mm) Fine Pitch BGA BV48A

TOP VIEW

51-85150-**

MoBL, MoBL2 and More Battery Life are trademarks of Cypress Semiconductor Corporation. All products and company names mentioned in this document are the trademarks of their respective holders.

	Document Title: CY62146CV30 MoBL TM 256K x 16 STATIC RAM Document Number: 38-05203									
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change						
**	112395	01/18/02	GAV	New Data Sheet						