256K x 16 Static RAM #### **Features** - · High speed: - -55 ns and 70 ns availability - · Voltage range: - CY62146CV30: 2.7V 3.3V - Pin compatible with CY62146V - · Ultra-low active power - Typical active current: 1.5 mA @ f = 1 MHz - Typical active current: 7 mA @ f = f_{max} (70 ns speed) - Low standby power - Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features - · Automatic power-down when deselected - · CMOS for optimum speed/power ### **Functional Description** The CY62146CV30 is a high-performance CMOS static RAM organized as 256K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL™) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 80% when addresses are not toggling. The device can also be put into standby mode reducing power consumption by 99% when deselected ($\overline{\text{CE}}$ HIGH). The input/output pins (I/O₀ – I/O₁₅) are placed in a high-impedance state when: deselected ($\overline{\text{CE}}$ HIGH), outputs are disabled ($\overline{\text{OE}}$ HIGH), both Byte High Enable and Byte Low Enable are disabled ($\overline{\text{BHE}}$, BLE HIGH), or during a Write operation ($\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW). Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O $_0$ – I/O $_7$), is written into the location specified on the address pins (A $_0$ – A $_1$ 7). If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins (I/O $_8$ – I/O $_1$ 5) is written into the location specified on the address pins (A $_0$ – A $_1$ 7). Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ – I/O₇. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the Truth Table on page 9 for a complete description of Read and Write modes. The CY62146CV30 is available in 48-ball FBGA packaging. FBGA (Top View) 1 6 NC OE A_2 BLE A_0 Α I/O₈ BHE A_3 CE I/Q_0 В 1/Q₉ 1/O₁₀ A_5 A_6 I/O₁ 1/02 С I/O₃ A_7 V_{SS} I/O₁₁ A₁₇ V_{cc} D 1/O₁₂ A₁₆ DNU I/O₄ Vcc Е 1/O₁₃ 1/014 F A₁₅ 1/Q₅ A₁₄ I/Q₆ A₁₂ 1/O₁₅ WE NC A_{13} I/O_7 G NC A_8 A_9 A_{10} A_{11} (NC Н #### **Product Portfolio** | | | | | | Po | wer Dis | sipation | (Industri | al) | | | | |-------------|-----------------------|--------------------------------------|-----------------------|-----------------------|----------------------------|---------|----------------------------|-----------|-----------------------------|-------|-------|-------------| | Product | | V _{CC} Range | | V _{CC} Range | | Speed | | Operat | ing, I _{CC} | | Sta | andby (L.) | | Fioduct | | | | Speeu | f = 1 MHz | | f = f _{max} | | Standby (I _{SB2}) | | | | | | V _{CC(min.)} | V _{CC(typ.)} ^[3] | V _{CC(max.)} | | Typ. ^[3] | Max. | Typ. ^[3] | Max. | Typ . ^[3] | Max. | | | | CY62146CV30 | 2.7V | 3.0V | 3.3V | 55 ns | 1.5 mA | 3 mA | 12 mA | 25 mA | 7 uA | 15 μΑ | | | | 01021400730 | 2.7 \ 3.0 \ \ | | 3.31 | 3.00 | | 1.5 mA | 3 mA | 7 mA | 15 mA | 7 μΑ | 15 μΑ | | # **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......–55°C to +125°C Supply Voltage to Ground Potential...-0.5V to $V_{ccmax} + 0.5V$ | DC Input Voltage ^[4] | -0.5V to V _{CC} + 0.5V | |--|---------------------------------| | Output Current into Outputs (LOW) | 20 mA | | Static Discharge Voltage(per MIL-STD-883, Method 3015) | > 2001V | | Latch-Up Current | >200 mA | | | | ### **Operating Range** | Device | Range | Ambient
Temperature | V _{CC} | |-------------|------------|------------------------|-----------------| | CY62146CV30 | Industrial | -40°C to +85°C | 2.7V to 3.3V | #### Notes: NC pins are not connected to the die. E3 (DNU) can be left as NC or V_{SS} to ensure proper application. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C. 4. $V_{IL(min.)} = -2.0V$ for pulse durations less than 20 ns. # **Electrical Characteristics** Over the Operating Range | Parame- | | | | | -55 | | | -70 | | | |------------------|--|--|--|------|----------------------------|------------------------|------------|-----------------|------------------------|------| | ter | Description | Test Con | Test Conditions | | Typ. ^[3] | Max. | Min. | Typ. [3] | Max. | Unit | | V _{OH} | Output HIGH Voltage | $I_{OH} = -1.0 \text{ mA}$ | V _{CC} = 2.7V | 2.4 | | | 2.4 | | | V | | V _{OL} | Output LOW Voltage | I _{OL} = 2.1mA | V _{CC} = 2.7V | | | 0.4 | | | 0.4 | V | | V _{IH} | Input HIGH Voltage | | | 2.2 | | V _{CC} + 0.3V | 1.8 | | V _{CC} + 0.3V | V | | V _{IL} | Input LOW Voltage | | | -0.3 | | 0.8 | -0.3 | | 0.8 | V | | I _{IX} | Input Leakage Current | $GND \le V_1 \le V_{CC}$ | | -1 | | +1 | -1 | | +1 | μΑ | | I _{OZ} | Output Leakage Cur-
rent | $GND \leq V_O \leq V_CC,$ | $GND \le V_O \le V_{CC}$, Output Disabled | | | +1 | – 1 | | +1 | μΑ | | | V _{CC} Operating Supply | $f = f_{MAX} = 1/t_{RC}$ | $V_{CC} = 3.3V$ | | 12 | 25 | | 7 | 15 | | | Icc | Current | f = 1 MHz | I _{OUT} = 0 mA
CMOS Levels | | 1.5 | 3 | | 1.5 | 3 | mA | | I _{SB1} | Automatic CE Pow-
er-Down Current—
CMOS Inputs | $\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.2\text{V}$
$\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2\text{V}$ or $\text{V}_{\text{IN}} \le 0.2\text{V}$, f = f _{max} (Address and Data Only), f=0 (OE,WE,BHE and BLE) | | | 7 | 15 | | 7 | 15 | μА | | I _{SB2} | Automatic CE Pow-
er-Down Current—
CMOS Inputs | $V_{\text{CC}} \ge V_{\text{CC}} - 0.2V$
$V_{\text{IN}} \ge V_{\text{CC}} - 0.2V$ or $V_{\text{IN}} \le 0.2V$,
$V_{\text{IN}} \ge 0.2V$, | | | | | | | | | # Capacitance^[5] | Parameter | Description | Test Conditions | Max. | Unit | |------------------|--------------------|---|------|------| | C _{IN} | Input Capacitance | $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ | 6 | pF | | C _{OUT} | Output Capacitance | $V_{CC} = V_{CC(typ.)}$ | 8 | pF | ### **Thermal Resistance** | Description | Test Conditions | Symbol | BGA | Units | |---|--|-------------------|-----|-------| | Thermal Resistance (Junction to Ambient) ^[5] | Still Air, soldered on a 4.25 × 1.125 inch, four-layer printed circuit board | Θ_{JA} | 55 | °C/W | | Thermal Resistance
(Junction to Case) ^[5] | | $\Theta_{\sf JC}$ | 16 | °C/W | #### Note: ^{5.} Tested initially and after any design or process changes that may affect these parameters. ### **AC Test Loads and Waveforms** | Parameters | 3.0V | Unit | |-----------------|-------|-------| | R1 | 1.105 | KOhms | | R2 | 1.550 | KOhms | | R _{TH} | 0.645 | KOhms | | V _{TH} | 1.75V | Volts | # Data Retention Characteristics (Over the Operating Range) | Parameter | Description | Conditions | Min. | Typ. ^[3] | Max. | Unit | |---------------------------------|---|---|-----------------|----------------------------|--------------------|------| | V_{DR} | V _{CC} for Data Retention | | 1.5 | | V _{ccmax} | V | | I _{CCDR} | Data Retention Current | V_{CC} = 1.5V
$CE \ge V_{CC} - 0.2V$,
$V_{IN} \ge V_{CC} - 0.2V$ or
$V_{IN} \le 0.2V$ | | 3 | 10 | μΑ | | t _{CDR} ^[5] | Chip Deselect to Data
Retention Time | | 0 | | | ns | | t _R ^[6] | Operation Recovery Time | | t _{RC} | | | ns | #### Note: ^{6.} Full device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} > 100 \mu s$ or stable at $V_{CC(min.)} > 100 \mu s$. #### **Data Retention Waveform** # Switching Characteristics Over the Operating Range^[7] | | | | 55 | -7 | | | |-----------------------------|--------------------------------------|-----|-----|-----|-----|------| | Parameter | Description | Min | Max | Min | Max | Unit | | READ CYCLE | • | 1 | | • | • | • | | t _{RC} | Read Cycle Time | 55 | | 70 | | ns | | t _{AA} | Address to Data Valid | | 55 | | 70 | ns | | t _{OHA} | Data Hold from Address Change | 10 | | 10 | | ns | | t _{ACE} | CE LOW to Data Valid | | 55 | | 70 | ns | | t _{DOE} | OE LOW to Data Valid | | 25 | | 35 | ns | | t _{LZOE} | OE LOW to Low Z ^[8] | 5 | | 5 | | ns | | t _{HZOE} | OE HIGH to High Z ^[8,10] | | 20 | | 25 | ns | | t _{LZCE} | CE LOW to Low Z ^[8] | 10 | | 10 | | ns | | t _{HZCE} | CE HIGH to High Z ^[8, 10] | | 20 | | 25 | ns | | t _{PU} | CE LOW to Power-Up | 0 | | 0 | | ns | | t _{PD} | CE HIGH to Power-Down | | 55 | | 70 | ns | | t _{DBE} | BHE / BLE LOW to Data Valid | | 25 | | 35 | ns | | t _{LZBE} [9] | BHE / BLE LOW to Low Z | 5 | | 5 | | ns | | t _{HZBE} | BHE / BLE HIGH to High Z | | 20 | | 25 | ns | | WRITE CYCLE ^[11] | | 1 | 1 | | | • | | t _{WC} | Write Cycle Time | 55 | | 70 | | ns | | t _{SCE} | CE LOW to Write End | 45 | | 60 | | ns | | t _{AW} | Address Set-Up to Write End | 45 | | 60 | | ns | | t _{HA} | Address Hold from Write End | 0 | | 0 | | ns | | t _{SA} | Address Set-Up to Write Start | 0 | | 0 | | ns | | t _{PWE} | WE Pulse Width | 45 | | 50 | | ns | | t _{BW} | BHE / BLE Pulse Width | 50 | | 60 | | ns | | t _{SD} | Data Set-Up to Write End | 25 | | 30 | | ns | | t _{HD} | Data Hold from Write End | 0 | | 0 | | ns | | t _{HZWE} | WE LOW to High Z ^[8, 10] | | 20 | | 25 | ns | | t _{LZWE} | WE HIGH to Low Z ^[8] | 5 | | 5 | | ns | | Notes: | • | 1 | | 1 | | | Test conditions assume signal transition time of 5 ns or less, timing reference levels of V_{CC(typ.)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZOE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZOE}, t_{HZDE} for any given device. 9. If both byte enables are toggled together, this value is 10 ns. 10. t_{HZOE}, t_{HZDE}, and t_{HZWE} transitions are measured when the <u>outputs</u> enter a high-impedance state. 11. The internal Write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE and/or BLE = V_{IL}. All signals must be ACTIVE to initiate a Write and any of these signals can terminate a Write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the Write. # **Switching Waveforms** # Read Cycle 1 (Address Transition Controlled) $^{[12,\ 13]}$ # Read Cycle 2 (OE Controlled) [13, 14] ## Notes: - Device is continuously selected. OE, CE = V_{IL}, BHE, BLE = V_{IL}. WE is HIGH for Read cycle. Address valid prior to or coincident with CE, BHE, BLE transition LOW. # Switching Waveforms (continued) # Write Cycle 1 (WE Controlled) [11, 15, 16] # Write Cycle 2 (CE Controlled) [11, 15, 16] #### Notes: - 15. Data I/O is high-impedance if OE = V_{IH}. 16. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state. 17. During this period, the I/Os are in output state and input signals should not be applied. # Switching Waveforms (continued) # Write Cycle 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) [16] # Write Cycle 4 (BHE/BLE Controlled, OE LOW)[16] # **Typical DC and AC Parameters** (Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ.)}$, $T_A = 25^{\circ}C$.) ### Operating Current vs. Supply Voltage ### Standby Current vs. Supply Voltage Access Time vs. Supply Voltage #### **Truth Table** | CE | WE | OE | BHE | BLE | Inputs/Outputs | Mode | Power | |----|----|----|-----|-----|--|---------------------|----------------------------| | Н | Х | Х | Х | Х | High Z | Deselect/Power-Down | Standby (I _{SB}) | | L | Х | Х | Н | Н | High Z | Output Disabled | Active (I _{CC}) | | L | Н | L | L | L | Data Out (I/O _O – I/O ₁₅) | Read | Active (I _{CC}) | | L | Н | L | Н | L | Data Out (I/O _O – I/O ₇);
I/O ₈ – I/O ₁₅ in High Z | Read | Active (I _{CC}) | | L | Н | L | L | Н | Data Out ($I/O_8 - I/O_{15}$); $I/O_0 - I/O_7$ in High Z | Read | Active (I _{CC}) | | L | Н | Н | L | L | High Z | Output Disabled | Active (I _{CC}) | | L | Н | Н | Н | L | High Z | Output Disabled | Active (I _{CC}) | | L | Н | Н | L | Н | High Z | Output Disabled | Active (I _{CC}) | | L | L | Х | L | L | Data In (I/O _O - I/O ₁₅) | Write | Active (I _{CC}) | | L | L | Х | Н | L | Data In (I/O _O – I/O ₇);
I/O ₈ – I/O ₁₅ in High Z | Write | Active (I _{CC}) | | L | L | Х | L | Н | Data In (I/O ₈ – I/O ₁₅);
I/O ₀ – I/O ₇ in High Z | Write | Active (I _{CC}) | # **Ordering Information** | Speed (ns) | Ordering Code | Package Name | Package Type | Operating Range | |------------|---------------------|--------------|---|-----------------| | 70 | CY62146CV30LL-70BAI | BA48B | 48-ball Fine Pitch BGA (7 mm × 8.5 mm × 1.2 mm) | Industrial | | | CY62146CV30LL-70BVI | BV48A | 48-ball Fine Pitch BGA (6 mm × 8 mm × 1 mm) | | | 55 | CY62146CV30LL-55BAI | BA48B | 48-ball Fine Pitch BGA (7 mm × 8.5 mm × 1.2 mm) | | | | CY62146CV30LL-55BVI | BV48A | 48-ball Fine Pitch BGA (6 mm × 8 mm × 1 mm) | | # **Package Diagrams** ### 48-Ball (7.00 mm x 8.5 mm x 1.2 mm) Thin BGA BA48B TOP VIEW 51-85106-*C Document #: 38-05203 Rev. ** ### Package Diagrams (continued) #### 48-ball (6.0 mm × 8.0 mm × 1.0 mm) Fine Pitch BGA BV48A TOP VIEW 51-85150-** MoBL, MoBL2 and More Battery Life are trademarks of Cypress Semiconductor Corporation. All products and company names mentioned in this document are the trademarks of their respective holders. | | Document Title: CY62146CV30 MoBL TM 256K x 16 STATIC RAM Document Number: 38-05203 | | | | | | | | | | |------|---|---------------|--------------------|-----------------------|--|--|--|--|--|--| | REV. | ECN NO. | Issue
Date | Orig. of
Change | Description of Change | | | | | | | | ** | 112395 | 01/18/02 | GAV | New Data Sheet | | | | | | |