128K x 16 Static RAM #### **Features** - High Speed - 55 ns and 70 ns availability - · Low voltage range: - CY62137CV18: 1.65V-1.95V - Pin Compatible w/ CY62137V18/BV18 - · Ultra-low active power - Typical Active Current: 0.5 mA @ f = 1 MHz - Typical Active Current: 1.5 mA @ f = f_{max} (70 ns speed) - Low standby power - Easy memory expansion with CE and OE features - Automatic power-down when deselected - CMOS for optimum speed/power ### **Functional Description** The CY62137CV18 is a high-performance CMOS static RAM organized as 128K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL™) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected ($\overline{\text{CE}}$ HIGH or both $\overline{\text{BLE}}$ and $\overline{\text{BHE}}$ are HIGH). The input/output pins (I/O $_0$ through I/O $_{15}$) are placed in a high-impedance state when: deselected ($\overline{\text{CE}}$ HIGH), outputs are disabled ($\overline{\text{OE}}$ HIGH), both $\overline{\text{Byte}}$ High Enable and $\overline{\text{Byte}}$ Low Enable are disabled ($\overline{\text{BHE}}$, $\overline{\text{BLE}}$ HIGH), or during a write operation ($\overline{\text{CE}}$ LOW, and $\overline{\text{WE}}$ LOW). Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O $_0$ through I/O $_7$), is written into the location specified on the address pins (A $_0$ through A $_{16}$). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O $_8$ through I/O $_{15}$) is written into the location specified on the address pins (A $_0$ through A $_{16}$). Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the <u>add</u>ress pins will appear on I/O₀ to I/O₇. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the Truth Table at the back of this data sheet for a complete description of read and write modes. The CY62137CV18 is available in a 48-ball FBGA package. MoBL, MoBL2, and More Battery Life are trademarks of Cypress Semiconductor Corporation. # Pin Configuration^[1, 2] # **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......-55°C to +125°C Supply Voltage to Ground Potential-0.2V to +2.4V | DC Voltage Applied to Outputs in High Z State ^[3] | –0.2V to V _{CC} + 0.2V | |--|---------------------------------| | DC Input Voltage ^[3] | –0.2V to V _{CC} + 0.2V | | Output Current into Outputs (LOW) | 20 mA | | Static Discharge Voltage(per MIL-STD-883, Method 3015) | >2001V | | Latch-Up Current | >200 mA | ### **Operating Range** | Device | Range | Ambient Temperature | V _{CC} | |-------------|------------|---------------------|-----------------| | CY62137CV18 | Industrial | −40°C to +85°C | 1.65V to 1.95V | ### **Product Portfolio** | | | | | | | Power Dissipation (Indust | | | | | |-------------|-----------------------|--------------------------------------|-----------------------|-------|------------------------------|---------------------------|----------------------------|------------------|---------------------|---------------------| | | | | | | Operating (I _{CC}) | | | | | | | | V _{CC} Range | | | | f = 1 | MHz | f = | f _{max} | Standby | (I _{SB2}) | | Product | V _{CC(min.)} | V _{CC(typ.)} ^[4] | V _{CC(max.)} | Speed | Typ. ^[4] | Max. | Typ. ^[4] | Max. | Typ. ^[4] | Max. | | CY62137CV18 | 1.65V | 1.80V | 1.95V | 55 ns | 0.5 mA | 2 mA | 2 mA | 7 mA | 1 μΑ | 8 μΑ | | | | | | 70 ns | 0.5 mA | 2 mA | 1.5 mA | 6 mA | | | - NC pins are not connected to the die. E3 (DNU) can be left as NC or V_{SS} to ensure proper application. $V_{IL}(min) = -2.0V$ for pulse durations less than 20 ns. - Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ)}$, $T_A = 25^{\circ}C$. # **Electrical Characteristics** Over the Operating Range | | | | | | | 18-55 | CY | 52137CV | 18-70 | | |------------------|--|---|--|------|---------------------|------------------------|------|---------------------|------------------------|------| | Parameter | Description | Test Cond | Test Conditions | | Typ. ^[4] | Max. | Min. | Typ. ^[4] | Max. | Unit | | V _{OH} | Output HIGH Voltage | $I_{OH} = -0.1 \text{ mA}$ | $V_{CC} = 1.65V$ | 1.4 | | | 1.4 | | | V | | V _{OL} | Output LOW Voltage | I _{OL} = 0.1 mA | V _{CC} = 1.65V | | | 0.2 | | | 0.2 | V | | V _{IH} | Input HIGH Voltage | | | | | V _{CC} + 0.2V | 1.4 | | V _{CC} + 0.2V | V | | V _{IL} | Input LOW Voltage | | | -0.2 | | 0.4 | -0.2 | | 0.4 | V | | I _{IX} | Input Leakage Current | $GND \le V_1 \le V_{CC}$ | -1 | | +1 | -1 | | +1 | μΑ | | | I _{OZ} | Output Leakage
Current | $\begin{array}{l} \text{GND} \leq \text{V}_{\text{O}} \leq \text{V}_{\text{CC}}, \\ \text{abled} \end{array}$ | GND \leq V _O \leq V _{CC} , Output Disabled | | | +1 | -1 | | +1 | μА | | | V _{CC} Operating Supply | $f = f_{MAX} = 1/t_{RC}$ | $V_{CC} = 1.95V$ | | 2 | 7 | | 1.5 | 6 | mA | | Icc | Current | f = 1 MHz | I _{OUT} = 0 mA
CMOS levels | | 0.5 | 2 | | 0.5 | 2 | mA | | I _{SB1} | Automatic CE
Power-Down Cur-
rent— CMOS Inputs | $\label{eq:control_control_control} \begin{split} \overline{CE} & \geq V_{CC} - 0.2V, \\ V_{IN} & \geq V_{CC} - 0.2V, V_{IN} \leq 0.2V \\ f & = f_{MAX} \underbrace{(Address \ and \ Data \ Only)}_{F}, \\ f & = 0 \ (OE, \ WE, \ BHE, \ and \ BLE) \end{split}$ | | | 1 | 8 | | 1 | 8 | μА | | I _{SB2} | Automatic CE
Power-Down Cur-
rent— CMOS Inputs | $\overline{\text{CE}} \ge V_{\text{CC}} - 0.2V$ $V_{\text{IN}} \ge V_{\text{CC}} - 0.2V$ $f = 0, V_{\text{CC}} = 1.95V$ | | | | | | | | | # Capacitance^[5] | Parameter | Description | Max. | Unit | | |------------------|--------------------|---|------|----| | C _{IN} | Input Capacitance | $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ | 6 | pF | | C _{OUT} | Output Capacitance | $V_{CC} = V_{CC(typ)}$ | 8 | pF | ### **Thermal Resistance** | Description | Test Conditions | Symbol | BGA | Unit | |---|---|-------------------|-----|------| | Thermal Resistance (Junction to Ambient) ^[5] | Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board | Θ_{JA} | 55 | °C/W | | Thermal Resistance (Junction to Case) ^[5] | | $\Theta_{\sf JC}$ | 16 | °C/W | ### Note: Document #: 38-05017 Rev. *B Page 3 of 11 ^{5.} Tested initially and after any design or process changes that may affect these parameters. ### **AC Test Loads and Waveforms** THÉVENIN EQUIVALENT Equivalent to: OUTPUT • | Parameters | 1.8V | UNIT | |-----------------|-------|-------| | R1 | 13500 | Ohms | | R2 | 10800 | Ohms | | R _{TH} | 6000 | Ohms | | V _{TH} | 0.80 | Volts | # Data Retention Characteristics (Over the Operating Range) | Parameter | Description | Conditions | Min. | Typ. ^[4] | Max. | Unit | |---------------------------------|---|--|-----------------|---------------------|------|------| | V_{DR} | V _{CC} for Data Retention | | 1.0 | | 1.95 | V | | I _{CCDR} | Data Retention Current | $\begin{split} &\frac{V_{CC}=1.0V}{CE \geq V_{CC}-0.2V}, \\ &V_{IN} \geq V_{CC}-0.2V \text{ or } V_{IN} \leq 0.2V \end{split}$ | | 0.5 | 5 | μΑ | | t _{CDR} ^[5] | Chip Deselect to Data
Retention Time | | 0 | | | ns | | t _R ^[6] | Operation Recovery Time | | t _{RC} | | | ns | # Data Retention Waveform^[7] - Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 μs or stable at V_{CC(min)} ≥ 100 μs. BHE.BLE is the AND of both BHE and BLE. Chip can be deselected by either disabling the chip enable signals or by disabling both BHE and BLE. # Switching Characteristics Over the Operating Range^[8] | | | 55 | i ns | 70 |) ns | | |-------------------|---|------|------|------|------|------| | Parameter | Description | Min. | Max. | Min. | Max. | Unit | | READ CYCLE | • | | • | • | | | | t _{RC} | Read Cycle Time | 55 | | 70 | | ns | | t _{AA} | Address to Data Valid | | 55 | | 70 | ns | | t _{OHA} | Data Hold from Address Change | 10 | | 10 | | ns | | t _{ACE} | CE LOW to Data Valid | | 55 | | 70 | ns | | t _{DOE} | OE LOW to Data Valid | | 25 | | 35 | ns | | t _{LZOE} | OE LOW to Low Z ^[9] | 5 | | 5 | | ns | | t _{HZOE} | OE HIGH to High Z ^[9, 10] | | 20 | | 25 | ns | | t _{LZCE} | CE LOW to Low Z ^[9] | 5 | | 10 | | ns | | t _{HZCE} | CE HIGH to High Z ^[9, 10] | | 20 | | 25 | ns | | t _{PU} | CE LOW to Power-Up | 0 | | 0 | | ns | | t _{PD} | CE HIGH to Power-Down | | 55 | | 70 | ns | | t _{DBE} | BLE/BHE LOW to Data Valid | | 55 | | 70 | ns | | t _{LZBE} | BLE/BHE LOW to Low Z ^[9] | 5 | | 5 | | ns | | t _{HZBE} | BLE/BHE HIGH to High Z ^[9, 10] | | 20 | | 25 | ns | | WRITE CYCLE | 11] | | | | | | | t _{WC} | Write Cycle Time | 55 | | 70 | | ns | | t _{SCE} | CE LOW to Write End | 40 | | 60 | | ns | | t _{AW} | Address Set-Up to Write End | 40 | | 60 | | ns | | t _{HA} | Address Hold from Write End | 0 | | 0 | | ns | | t _{SA} | Address Set-Up to Write Start | 0 | | 0 | | ns | | t _{PWE} | WE Pulse Width | 40 | | 50 | | ns | | t _{BW} | BLE/BHE LOW to Write End | 40 | | 60 | | ns | | t _{SD} | Data Set-Up to Write End | 25 | | 30 | | ns | | t _{HD} | Data Hold from Write End | 0 | | 0 | | ns | | t _{HZWE} | WE LOW to High Z ^[9, 10] | | 20 | | 25 | ns | | t _{LZWE} | WE HIGH to Low Z ^[9] | 5 | | 10 | | ns | Test conditions assume signal transition time of 5 ns or less, timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to V_{CC(typ)}, and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZDE} is less than t_{LZOE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device. t_{HZCE}, t_{HZCE}, t_{HZCE}, t_{HZDE} and t_{HZWE} transitions are measured when the outputs enter a high impedance state. The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}. BHE and/or BLE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write. # **Switching Waveforms** # Read Cycle No. 1(Address Transition Controlled)^[12, 13] t_{RC} **ADDRESS** toha DATA OUT PREVIOUS DATA VALID DATA VALID # Read Cycle No. 2 (OE Controlled)^[13, 14] - Device is continuously selected. OE, CE = V_{IL}, BHE and/or BLE = V_{IL}. WE is HIGH for read cycle. Address valid prior to or coincident with CE, BHE, BLE, transition LOW. # **Switching Waveforms** - 15. Data I/O is high impedance if OE = V_{IH}. 16. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state. 17. During this period, the I/Os are in output state and input signals should not be applied. # **Switching Waveforms** # Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) $^{[16]}$ # Write Cycle No. 4 ($\overline{BHE}/\overline{BLE}$ Controlled, \overline{OE} LOW) $^{[16]}$ # **Typical DC and AC Characteristics** (Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)} Typ, T_A = 25°C.) # **Truth Table** | CE | WE | OE | BHE | BLE | Inputs/Outputs | Mode | Power | |----|----|----|-----|-----|--|---------------------|----------------------------| | Н | Х | Х | Х | Х | High Z | Deselect/Power-Down | Standby (I _{SB}) | | Х | Х | Х | Н | Н | High Z | Deselect/Power-Down | Standby (I _{SB}) | | L | Н | L | L | L | Data Out (I/O _O -I/O ₁₅) | Read | Active (I _{CC}) | | L | Н | L | Н | L | Data Out (I/O _O –I/O ₇);
I/O ₈ –I/O ₁₅ in High Z | Read | Active (I _{CC}) | | L | Н | L | L | Н | Data Out (I/O ₈ –I/O ₁₅);
I/O ₀ –I/O ₇ in High Z | Read | Active (I _{CC}) | | L | Н | Н | L | L | High Z | Output Disabled | Active (I _{CC}) | | L | Н | Н | Н | L | High Z | Output Disabled | Active (I _{CC}) | | L | Н | Н | L | Н | High Z | Output Disabled | Active (I _{CC}) | | L | L | Х | L | L | Data In (I/O _O -I/O ₁₅) | Write | Active (I _{CC}) | | L | L | Х | Н | L | Data In (I/O _O –I/O ₇);
I/O ₈ –I/O ₁₅ in High Z | Write | Active (I _{CC}) | | L | L | Х | L | Н | Data In (I/O ₈ –I/O ₁₅);
I/O ₀ –I/O ₇ in High Z | Write | Active (I _{CC}) | Document #: 38-05017 Rev. *B # **Ordering Information** | Speed (ns) | Ordering Code | Package
Name | Package Type | Operating
Range | |------------|---------------------|-----------------|------------------------|--------------------| | 70 | CY62137CV18LL-70BAI | BA48A | 48-Ball Fine Pitch BGA | Industrial | | 55 | CY62137CV18LL-55BAI | | | | ### **Package Diagram** ### 48-Ball (7.00 mm x 7.00 mm x 1.20 mm) Fine Pitch BGA BA48A -7.00 ± 0.20 51-85096-A | | Document Title: CY62137CV18 MoBL2™, 128K x 16 Static RAM Document Number: 38-05017 | | | | | | | | | | |------|--|---|--------------------|--|--|--|--|--|--|--| | REV. | ECN NO. | Issue
Date | Orig. of
Change | Description of Change | | | | | | | | ** | 106265 | 5/7/01 | HRT/MGN | New Data Sheet | | | | | | | | *A | 108941 | 108941 08/24/01 MGN From Preliminary to Final | | | | | | | | | | *B | 110572 | 11/02/01 | MGN | Format standardization. Improved Typical Icc @ f = 1 MHz for 55 ns & 70 ns and Max Icc @ f = f_{MAX} for 70 ns. Improved Typical and Max I _{CCDR} . | | | | | | |