FEATURES

■ Max. toggle frequency of 800 MHz
■ Differential outputs
■ IEE min. of -80 mA
■ Industry standard 100K ECL levels
■ Extended supply voltage option:
VEe $=-4.2 \mathrm{~V}$ to -5.5 V

- Voltage and temperature compensation for improved noise immunity
- Internal $75 \mathrm{~K} \Omega$ input pull-down resistors
- 150\% faster than Fairchild

■ 40\% lower power than Fairchild

- Function and pinout compatible with Fairchild F100K

■ Available in 24-pin CERPACK and 28-pin PLCC packages

BLOCK DIAGRAM

DESCRIPTION

The SY100S331 offers three D-type, edge-triggered master/slave flip-flops with true and complement outputs, designed for use in high-performance ECL systems. Each flip-flop is controlled by a common clock (CPc), as well as its own clock pulse (CPn). The resultant clock signal controlling the flip-flop is the logical OR operation of these two clock signals. Data enters the master when both CPc and CPn are LOW and enters the slave on the rising edge of either CP_{c} or CPn (or both).

Additional control signals include Master Set (MS) and Master Reset (MR) inputs. Each flip-flop also has its own Direct Set (SDn) and Direct Clear (CDn) signals. The MR, MS, SDn and DCn signals override the clock signals. The inputs on this device have $75 \mathrm{~K} \Omega$ pull-down resistors.

PIN NAMES

Pin	Function
$\mathrm{CP} 0-\mathrm{CP} 2$	Individual Clock Inputs
CPc	Common Clock Input
Do - D2	Data Inputs
CDo - CD2	Individual Direct Clear Inputs
SDn	Individual Direct Set Inputs
MR	Master Reset Input
MS	Master Set Input
Q0-Q2	Data Outputs
$\overline{\mathrm{Q}} 0-\overline{\mathrm{Q}} 2$	Complementary Data Outputs
Vees	Vee Substrate
Vcca	Vcco for ECL Outputs

PACKAGE/ORDERING INFORMATION

28-Pin PLCC (J28-1)

24-Pin Cerpack (F24-1)

Ordering Information

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY100S331FC	F24-1	Commercial	SY100S331FC	Sn-Pb
SY100S331FCTR $^{(1)}$	F24-1	Commercial	SY100S331FC	Sn-Pb
SY100S331JC	J28-1	Commercial	SY100S331JC	Sn-Pb
SY100S331JCTR ${ }^{(1)}$	J28-1	Commercial	SY100S331JC	Sn-Pb
SY100S331JZ ${ }^{(2)}$	J28-1	Commercial	SY100S331JZ with Pb-Free bar-line indicator	Matte-Sn
SY100S331JZTR ${ }^{(1,2)}$	J28-1	Commercial	SY100S331JZ with Pb-Free bar-line indicator	Matte-Sn

Notes:

1. Tape and Reel.
2. Pb -Free package is recommended for new designs.

TRUTH TABLES

Asynchronous Operation ${ }^{(1)}$					
Inputs					
Dn	CPn	CPc	MS SDn	MR DCn	Qn (t+1)
X	X	X	H	L	H
X	X	X	L	H	L
X	X	X	H	H	U

NOTE:

1. $\mathrm{H}=$ High Voltage Level, $\mathrm{L}=$ Low Voltage Level, $\mathrm{X}=$ Don't Care, $\mathrm{U}=$ Undefined, $t=$ Time before CP Positive Transition, $t+1=$ Time after CP Positive Transition, $u=$ Low-to-High Transition

Synchronous Operation ${ }^{(1)}$					
In					
Dn	CPn	CPc $^{\text {MS }}$	MS SDn	MR DCn	Qn
L	u	L	L	L	L
H	u	L	L	L	H
L	L	u	L	L	L
H	L	u	L	L	H
X	L	L	L	L	$\mathrm{Qn} \mathrm{(t)}$
X	H	X	L	L	$\mathrm{Qn} \mathrm{(t)}$
X	X	H	L	L	$\mathrm{Qn} \mathrm{(t)}$

NOTE:

1. $\mathrm{H}=$ High Voltage Level, $\mathrm{L}=$ Low Voltage Level, $\mathrm{X}=$ Don't Care, $\mathrm{U}=$ Undefined, $t=$ Time before CP Positive Transition, $t+1=$ Time after CP Positive Transition, $u=$ Low-to-High Transition

DC ELECTRICAL CHARACTERISTICS

$\mathrm{VEE}=-4.2 \mathrm{~V}$ to -5.5 V unless otherwise specified, $\mathrm{VCC}=\mathrm{VCCA}=\mathrm{GND}$

Symbol	Parameter	Min.	Typ.	Max.	Unit	
IIH	Input HIGH Current, All Inputs	-	-	200	$\mu \mathrm{~A}$	VIN = VIH (Max.)
IEE	Power Supply Current	-80	-65	-35	mA	Inputs Open

AC ELECTRICAL CHARACTERISTICS

CERPACK
$\mathrm{VEE}=-4.2 \mathrm{~V}$ to -5.5 V unless otherwise specified, $\mathrm{VCC}=\mathrm{VCCA}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{TA}=0^{\circ} \mathrm{C}$		$\mathrm{TA}=+25^{\circ} \mathrm{C}$		$\mathrm{TA}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min.	Max.	Min.	Max.	Min.	Max.		
$f_{\text {max }}$	Toggle Frequency	800	-	800	-	800	-	MHz	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay CPc to Output	300	800	300	800	300	800	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay CPn to Output	300	800	300	800	300	800	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay CDn, SDn to Output	300	900	300	900	300	900	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay MS, MR to Output	300	1000	300	1000	300	1000	ps	
$\begin{aligned} & \text { tTLL } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	300	900	300	900	300	900	ps	
ts	Set-up Time Dn CDn, SDn (Release Time) MS, MR (Release Time)	$\begin{aligned} & 400 \\ & 500 \\ & 800 \end{aligned}$	—	$\begin{aligned} & 400 \\ & 500 \\ & 800 \end{aligned}$	-	$\begin{aligned} & 400 \\ & 500 \\ & 800 \end{aligned}$	-	ps	
th	Hold Time Dn	300	-	300	-	300	-	ps	
tpw (H)	Pulse Width HIGH CPn, CPc, DCn SDn, MR, MS	800	-	800	-	800	-	ps	

PLCC

VEE $=-4.2 \mathrm{~V}$ to -5.5 V unless otherwise specified, $\mathrm{VCC}=\mathrm{VCCA}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{TA}=0^{\circ} \mathrm{C}$		$\mathrm{TA}=+25^{\circ} \mathrm{C}$		TA $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min.	Max.	Min.	Max.	Min.	Max.		
fmax	Toggle Frequency	800	-	800	-	800	-	MHz	
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay CPc to Output	300	700	300	700	300	700	ps	
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay CPn to Output	300	700	300	700	300	700	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay CDn, SDn to Output	300	800	300	800	300	800	ps	
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay MS, MR to Output	300	900	300	900	300	900	ps	
$\begin{aligned} & \hline \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	300	900	300	900	300	900	ps	
ts	Set-up Time Dn CDn, SDn (Release Time) MS, MR (Release Time)	$\begin{aligned} & 400 \\ & 500 \\ & 800 \end{aligned}$	-	$\begin{aligned} & 400 \\ & 500 \\ & 800 \end{aligned}$	-	$\begin{aligned} & 400 \\ & 500 \\ & 800 \end{aligned}$	-	ps	
th	Hold Time Dn	300	-	300	-	300	-	ps	
tpw (H)	Pulse Width HIGH CPn, CPc, DCn SDn, MR, MS	800	-	800	-	800	-	ps	

TIMING DIAGRAMS

Propagation Delay (Clock) and Transition Times

Note:

$\mathrm{VEE}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -5.5 V unless otherwise specified, $\mathrm{VcC}=\mathrm{VcCA}=\mathrm{GND}$

Propagation Delay (Sets and Resets)

TIMING DIAGRAMS

Data Setup and Hold Time

Notes:

ts is the minimum time before the transition of the clock that information must be present at the data input. th is the minimum time after the transition of the clock that information must remain unchanged at the data input.

24-PIN CERPACK (F24-1)

NOTES:

1. DIMENSIONS ARE IN INCHES[MM].
2. THIS DIMENSION INCLUDES GLASS PROTRUSION

AND CAP TO BASE ALIGNMENT TOLERANCES.
3. DIMENSIONS SHOWN ARE MAX/MIN,

WHERE NOTED.

28-PIN PLCC (J28-1)

Rev. 03

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 wEB http://www.micrel.com
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.
© 2006 Micrel, Incorporated.

