
SEMIX 252GB176HD

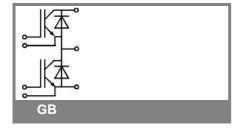
SEMiX[®] 2

Trench IGBT Modules

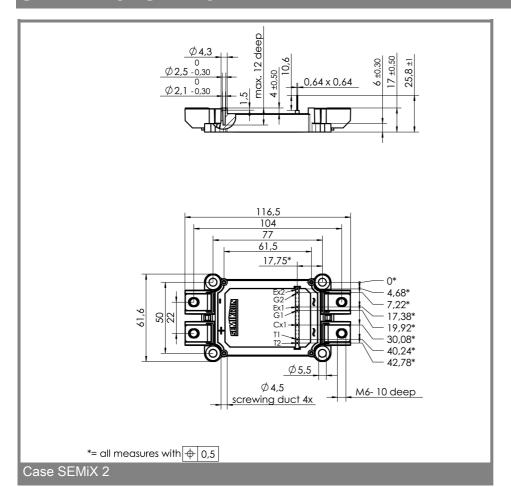
SEMIX 252GB176HD

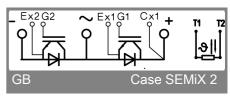
Target Data

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- · High short circuit capability

Typical Applications


- AC inverter drives
- UPS
- Electronic welders


Absolute	Maximum Ratings	T _{case} = 25°C, unless otherwise specified							
Symbol	Conditions	Values	Units						
IGBT									
V_{CES}		1700	V						
I _C	T _c = 25 (80) °C	260 (170)	Α						
I _{CRM}	t _n = 1 ms	300	Α						
V_{GES}		± 20	V						
T_{vj}^{-1} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C						
V_{isol}	AC, 1 min.	4000	V						
Inverse diode									
I _F	T _c = 25 (80) °C	210 (140)	Α						
I _{FRM}	$t_p = 1 \text{ ms}$	300	Α						
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 25 ^{\circ}\text{C}$	1200	Α						

Characte	ristics T _c	_{ase} = 25°C	_e = 25°C, unless otherwise specified				
Symbol	Conditions	min.	typ.	max.	Units		
IGBT		•			•		
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 6 \text{ mA}$	5,2	5,8	6,4	V		
I _{CES}	$V_{GE} = 0$, $V_{CE} = V_{CES}$, $T_j = 25$ (125) °C			1,2	mA		
V _{CE(TO)}	$T_j = 25 (125) ^{\circ}C$		1 (0,9)	1,2 (1,1)	V		
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		6,7 (10,3)		mΩ		
V _{CE(sat)}	I_{Cnom} = 150 A, V_{GE} = 15 V,		2 (2,45)	2,45 (2,9)	V		
	T _j = 25 (125) °C, chip level						
C _{ies}	under following conditions		11,5		nF		
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		0,6		nF		
C _{res}			0,5		nF		
L _{CE}			18		nH		
R _{CC'+EE'}	terminal-chip, T _c = 25 (125) °C				mΩ		
$t_{d(on)}/t_r$	V _{CC} = 1200 V, I _{Cnom} = 150 A				ns		
$t_{d(off)}/t_{f}$	V _{GE} = ± 15 V				ns		
$E_{on} (E_{off})$	$R_{Gon} = R_{Goff} = \Omega$, $T_j = 125 ^{\circ}C$		100 (50)		mJ		
Inverse d	Inverse diode						
$V_F = V_{EC}$	I_{Fnom} = 150 A; V_{GE} = 0 V; T_j = 25 (125) °C, chip level		1,7 (1,7)	1,9 (1,9)	V		
V _(TO)	T _i = 25 (125) °C		1,1 (0,9)	1,3 (1,1)	V		
r _T	$T_j = 25 (125) ^{\circ}C$		4 (5,3)	4 (5,3)	mΩ		
I _{RRM}	I_{Fnom} = 150 A; T_j = 25 (125) °C				Α		
Q_{rr}	di/dt = A/μs				μC		
E _{rr}	V _{GE} = -15 V				mJ		
Thermal of	characteristics						
R _{th(j-c)}	per IGBT			0,11	K/W		
$R_{th(j-c)D}$	per Inverse Diode			0,17	K/W		
R _{th(j-c)FD}	per FWD				K/W		
$R_{th(c-s)}$	per module		0,045		K/W		
Temperat	ure sensor						
R ₂₅	T _c = 25 °C		5 ±5%		kΩ		
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2 - 1/T_1)]$; T[K];B		3420		K		
Mechanical data							
M_s/M_t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm		
w			236		g		
		1					

SEMIX 252GB176HD

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.