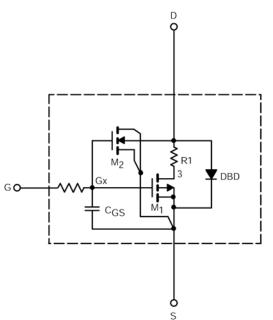


### P-Channel 100-V (D-S) MOSFET

#### **CHARACTERISTICS**

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

#### DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to  $125^{\circ}$ C temperature ranges under the pulsed 0-V to 10-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

#### SUBCIRCUIT MODEL SCHEMATIC

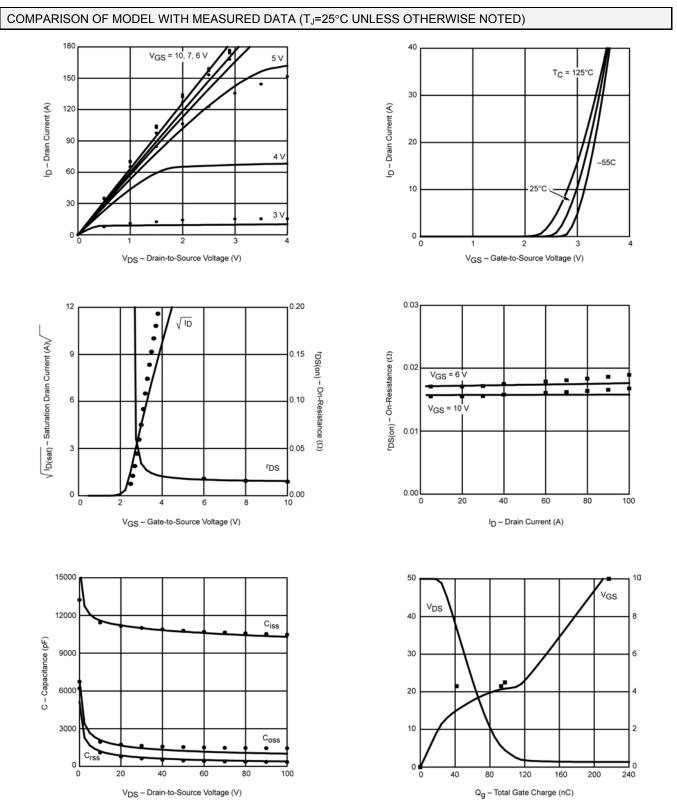
A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched  $C_{gd}$  model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.



This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

# SPICE Device Model SUM90P10-19L **Vishay Siliconix**




| SPECIFICATIONS (T <sub>J</sub> = 25°C UNLESS OTHERWISE NOTED) |                     |                                                                                 |                   |                  |      |
|---------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------|-------------------|------------------|------|
| Parameter                                                     | Symbol              | Test Condition                                                                  | Simulated<br>Data | Measured<br>Data | Unit |
| Static                                                        |                     |                                                                                 | -                 |                  |      |
| Gate Threshold Voltage                                        | $V_{GS(th)}$        | $V_{DS}$ = $V_{GS}$ , $I_D$ = -250 $\mu$ A                                      | 1.9               |                  | V    |
| On-State Drain Current <sup>a</sup>                           | I <sub>D(on)</sub>  | $V_{DS}$ = -5 V, $V_{GS}$ = -10 V                                               | 313               |                  | А    |
| Drain-Source On-State Resistance <sup>a</sup>                 | r <sub>DS(on)</sub> | $V_{GS}$ = -10 V, I <sub>D</sub> = -20 A                                        | 0.0157            | 0.0156           | Ω    |
|                                                               |                     | $V_{GS}$ = -4.5 V, I <sub>D</sub> = -15 A                                       |                   | 0.0173           |      |
| Forward Voltage <sup>a</sup>                                  | V <sub>SD</sub>     | $V_{DS} = -15 \text{ V}, \text{ I}_{F} = -20 \text{ A}$                         | 0.88              | 0.80             | V    |
| Dynamic <sup>ь</sup>                                          | -                   | -                                                                               | -                 | -                |      |
| Input Capacitance                                             | C <sub>iss</sub>    | V <sub>DS</sub> =50 V, V <sub>GS</sub> = 0 V, f = 1 MHz                         | 10710             | 11100            | pF   |
| Output Capacitance                                            | C <sub>oss</sub>    |                                                                                 | 556               | 700              |      |
| Reverse Transfer Capacitance                                  | C <sub>rss</sub>    |                                                                                 | 1214              | 1690             |      |
| Total Gate Charge <sup>c</sup>                                | Q <sub>g</sub>      | $V_{\text{DS}}$ = $-$ 50 V, $V_{\text{GS}}$ = $-10$ V, $I_{\text{D}}$ = $-90$ A |                   | 217              | nC   |
|                                                               |                     | $V_{\rm DS}$ = –50 V, $V_{\rm GS}$ = –4.5 V, $I_{\rm D}$ = –90 A                | 117               | 97               |      |
| Gate-Source Charge <sup>c</sup>                               | Q <sub>gs</sub>     |                                                                                 | 42                | 42               |      |
| Gate-Drain Charge <sup>c</sup>                                | Q <sub>gd</sub>     |                                                                                 | 51                | 51               |      |

Notes

a. Pulse test; pulse width  $\leq$  300  $\mu s$ , duty cycle  $\leq$  2%. b. Guaranteed by design, not subject to production testing. c. Independent of operating temperature.



## SPICE Device Model SUM90P10-19L Vishay Siliconix



Note: Dots and squares represent measured data.