AP1212
DUAL USB HIGH-SIDE POWER SWITCH

Features

- Compliant to USB specifications
- Dual independent switches control
- $\quad 2.7 \mathrm{~V}$ to 5.5 V input voltage
- $\quad 500 \mathrm{~mA}$ minimum continuous current per port
- $110 \mathrm{~m} \Omega$ typical on-resistance
- 1.25 A maximum short circuit current limit
- Independent open-drain fault flag pins
- $\quad 110 \mu \mathrm{~A}$ typical on-state supply current
- $\quad 1 \mu \mathrm{~A}$ typical off-state supply current
- Output can be forced higher than input (off-state)
- Thermal shutdown
- $\quad 2.4 \mathrm{~V}$ typical under voltage lockout (UVLO)
- 1 ms turn-on (soft-start) and fast turn-off
- Enable active-high (H) or active-low (L)
- SOP-8L: Available in "Green" Molding Compound (No Br, Sb)
- Lead Free Finish/RoHS Compliant (Note 1)

General Description

The AP1212 series are dual integrated high-side power switch with independent enable and flag functions, optimized for self-powered and bus-powered Universal Serial Bus (USB) applications. The AP1212 series support the following USB requirements: each switch channel supplies up to 500 mA as required by USB downstream devices; the switch's low on-resistance meets USB voltage drop requirements; fault current is limited to typically 1000 mA , well below the UL 25 VA safety requirements; and a flag output is available to indicate fault conditions to the local USB controller. Soft start eliminates the momentary voltage drop on the upstream port that may occur when the switch is enabled in bus-powered applications. Additional features include thermal shutdown to prevent catastrophic switch failure from high-current loads, under voltage lockout (UVLO) to ensure that the device remains off unless there is a valid input voltage present, and 3.3 V and 5 V logic compatible enable inputs.

Applications

- USB hubs
- Hot plug-in power supplies
- Battery-charger circuits

Ordering Information

Note: 1. RoHS revision 13.2.2003. Glass and High Temperature Solder Exemptions Applied, see EU Directive Annex Notes 5 and 7.

Device (Note 3)	Package Code	Packaging	Tube		13" Tape and Reel	
			Quantity	Part Number Suffix	Quantity	Part Number Suffix
AP1212XS	S	SOP-8L	100	-U	2500/Tape \& Reel	-13

Note: 2. Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be on found our website at http://www.diodes.com/datasheets/ap02001.pdf.

Pin Assignments

Pin Descriptions

Name	Description
EN1	Enable: Logic-compatible enable input. (H: active high, L: active low). Do not float.
FLG1	Fault Flag: Active-low, open-drain output. Indicates over current, FLGLO, and thermal shutdown.
GND	Supply return.
IN	Supply Input: Output MOSFET drain. Also supplies IC's internal circuitry. Connect to positive supply.
OUT1	Switch Output: Output MOSFET Source. Typically connect to Switched side of load.

Block Diagram

Absolute Maximum Ratings (Note 3)

Symbol	Parameter	Rating	Unit
$\mathrm{V}_{\text {IN }}$	Supply Voltage	+7	V
$\mathrm{~V}_{\mathrm{FLG}}$	Fault Flag Voltage	+7	V
$\mathrm{I}_{\text {FLG }}$	Fault Flag Current	50	mA
$\mathrm{~V}_{\text {OUT }}$	Output Voltage	+7	V
$\mathrm{~V}_{\text {EN }}$	Control Input Range	-0.3 to $\mathrm{V}_{\text {IN }}+2$	V
$\mathrm{~T}_{\text {ST }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
ESD HBM	Note 3	500	V
ESD MM	Note 3	150	V

Operating Ratings (Note 4)

Symbol	Parameter	Rating	Unit
V_{IN}	Supply Voltage	+2.7 to +5.5	V
$\mathrm{~T}_{\mathrm{OP}}$	Operating Junction Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
Θ_{JA}	Thermal Resistance SOP Junction to Ambient	165	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Θ_{JC}	Thermal Resistance SOP Junction to Case	26	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note: 3. Exceeding the absolute maximum rating may damage the device.
4. The device is not guaranteed to function outside its operating rating.

Electrical Characteristics (Under the conditions of $\mathrm{V}_{\mathbb{N}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
Icc	Supply Current	Switch off, OUT = open (Note 6)		0.50	5	$\mu \mathrm{A}$
		All switches on, OUT = open (Note 6)		110	160	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IT }}$	Enable Input Threshold	(Note 6)	0.8	1.7	2.40	V
$\mathrm{I}_{\text {EN }}$	Enable Input Current	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$ to 5.5 V	-1	± 0.01	1	$\mu \mathrm{A}$
$\mathrm{C}_{\text {EN }}$	Enable Input Capacitance			1		pF
$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	Switch Resistance	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V} \sim 5.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=$ 500 mA , each switch		110	140	$\mathrm{m} \Omega$
Tond	Output Turn-On Delay	$\mathrm{R}_{\mathrm{L}}=10 \Omega$ each output		30		$\mu \mathrm{S}$
T_{R}	Output Turn-On Rise Time	$\mathrm{R}_{\mathrm{L}}=10 \Omega$ each output		1		mS
$\mathrm{T}_{\text {OFFD }}$	Output Turnoff Delay	$\mathrm{R}_{\mathrm{L}}=10 \Omega$ each output		0.5	10	$\mu \mathrm{S}$
T_{F}	Output Turnoff Fall Time	$\mathrm{R}_{\mathrm{L}}=10 \Omega$ each output		0.5	10	$\mu \mathrm{S}$
$\mathrm{I}_{\text {LEAK }}$	Output Leakage Current	Each output (output disabled)			10	$\mu \mathrm{A}$
lout	Continuous Load Current	Each output	0.6			A
los	Short-circuit Current Limit	Each output (enable into load), $V_{\text {OUT }}=0 \mathrm{~V}$	0.8	1.0	1.25	A
ILIM	Current-Limit Threshold	Ramped load applied to enabled output	1.0	1.2	1.4	A
$\mathrm{T}_{\text {TS }}$	Over-temperature Shutdown Threshold	T_{J} increasing		140		${ }^{\circ} \mathrm{C}$
		T_{J} decreasing		130		${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {FO }}$	Error Flag Output Resistance	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA}$		10	25	Ω
		$\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA}$		15	40	Ω
$\mathrm{I}_{\mathrm{FOH}}$	Error Flag Off Current	$\mathrm{V}_{\text {FLAG }}=5 \mathrm{~V}$		0.01	1	$\mu \mathrm{A}$
UVLO	UVLO Threshold	$\mathrm{V}_{\text {IN }}=$ increasing		2.5		V
		$\mathrm{V}_{\text {IN }}=$ decreasing		2.3		V

Note: 5. Devices are ESD sensitive. Handling precautions are recommended. Human Body model, tested per JEDEC 22-A114. Machine model, tested per JEDEC 22-A115.
6. Off is $\mathrm{V}_{\mathrm{EN}} \leqq 0.8 \mathrm{~V}$ and on is $\mathrm{V}_{\mathrm{EN}} \geqq 2.4 \mathrm{~V}$ for the AP1212H. Off is $\mathrm{V}_{E N} \geqq 2.4 \mathrm{~V}$ and on is $\mathrm{V}_{E N} \leqq 0.8 \mathrm{~V}$ for the AP1212L.

Typical Performance Characteristics

On-Resistance vs. Supply Voltage

Turn-On Rise Time vs. Supply Voltage

On-Current vs. Supply Voltage

On-Resistance vs. Temperature

Turn-On Rise Time vs. Temperature

On-Current vs. Temperature

Typical Performance Characteristics (Continued)

Enable Threshold vs. Supply Voltage

Short-Circuit Current-Limit vs. Supply Voltage

Off-Current vs. Temperature

Short-Circuit Current-Limit vs. Temperature

Typical Performance Characteristics
 (Continued)

UVLO Threshold vs. Temperature

Functional Characteristics

Typical Application Circuit

Test Circuit

AP1212
DUAL USB HIGH-SIDE POWER SWITCH

Function Description

Error Flag

An open-drained output of N-channel MOSFET, the FLG output is pulled low to signal the following fault conditions: input undervoltage, output current limit, and thermal shutdown.

Current Limit

The current limit threshold is preset internally. It protects the output MOSFET switches from damage due to undesirable short circuit conditions or excess inrush current often encountered during hot plug-in. The low limit of the current limit threshold of the AP1212 allows a minimum current of 0.5A through the MOSFET switches. A current limit condition will signal the error flag.

Thermal Shutdown

When the chip temperature exceeds $140^{\circ} \mathrm{C}$ for any reason other than over current fault of either one of the two MOSFET switches, the thermal shutdown function turns off both MOSFET switches and signals the error flag. A hysteresis of $10^{\circ} \mathrm{C}$ prevents the MOSFETs from turning back on until the chip temperature drops to below $130^{\circ} \mathrm{C}$.

Supply Filtering

A $0.1 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ bypass capacitor from IN to GND, located near the device, is strongly recommended to control supply transients. Without a bypass capacitor, an output short may cause sufficient ringing on the input (from supply lead inductance) to damage internal control circuitry.

Transient Droop Requirements

USB applications support dynamic attachment (hot plug-in) of peripherals. A current surge is caused by the input capacitance of downstream device. Ferrite beads are recommended in series with all power and ground connector pins. Ferrite beads reduce EMI and limit the inrush current during hot-attachment by filtering high-frequency signals.

Short Circuit Transient

Bulk capacitance provides the short-term transient current needed during a hot-attachment event. With a $33 \mu \mathrm{~F}, 16 \mathrm{~V}$ tantalum or $100 \mu \mathrm{~F}, 10 \mathrm{~V}$ electrolytic capacitor mounted close to downstream connector per port should provide transient drop protection.

Printed Circuit Layout

The power circuitry of USB printed circuit boards requires a customized layout to maximize thermal dissipation and to minimize voltage drop and EMI.

Marking Information

SOP-8L

Device	Package	Identification Code
AP1212XS	SOP-8L	AP1212

Package Information

Package Type: SOP-8L

AP1212
DUAL USB HIGH-SIDE POWER SWITCH

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neithe does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.

