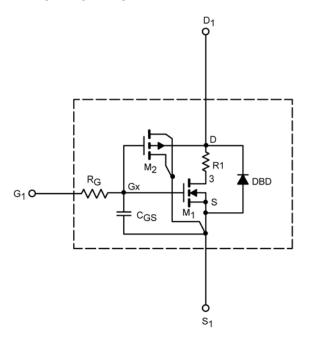


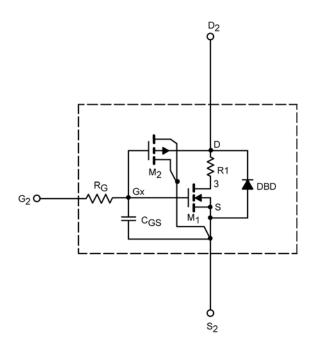
## SPICE Device Model Si1970DH Vishay Siliconix

## **Dual N-Channel 30-V (D-S) MOSFET**

#### **CHARACTERISTICS**

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


#### **DESCRIPTION**

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to  $125^{\circ}$ C temperature ranges under the pulsed 0-V to 4.5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched  $C_{\rm gd}$  model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

#### SUBCIRCUIT MODEL SCHEMATIC



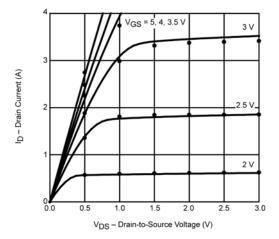


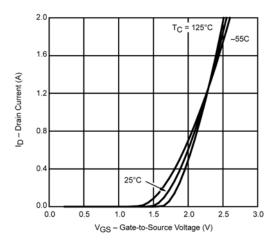
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

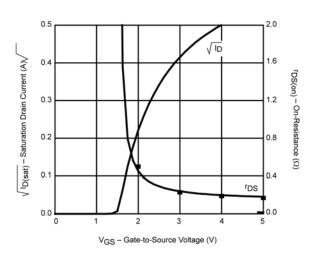
## **SPICE Device Model Si1970DH**

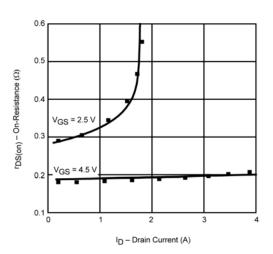
# Vishay Siliconix

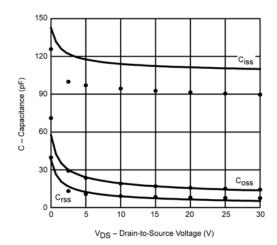



| SPECIFICATIONS (T <sub>J</sub> = 25°C UNLESS OTHERWISE NOTED) |                     |                                                                         |                   |                  |              |
|---------------------------------------------------------------|---------------------|-------------------------------------------------------------------------|-------------------|------------------|--------------|
| Parameter                                                     | Symbol              | Test Condition                                                          | Simulated<br>Data | Measured<br>Data | Unit         |
| Static                                                        |                     |                                                                         |                   |                  |              |
| Gate Threshold Voltage                                        | $V_{GS(th)}$        | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$                                    | 1.3               |                  | V            |
| On-State Drain Current <sup>a</sup>                           | I <sub>D(on)</sub>  | $V_{DS}$ < 5 V, $V_{GS}$ = 4.5 V                                        | 104               |                  | Α            |
| Drain-Source On-State Resistance <sup>a</sup>                 | _                   | $V_{GS}$ = 4.5 V, $I_{D}$ = 1.2 A                                       | 0.191             | 0.185            | Ω            |
|                                                               | r <sub>DS(on)</sub> | $V_{GS} = 2.5 \text{ V}, I_D = 0.29 \text{ A}$                          | 0.291             | 0.285            |              |
| Forward Transconductance <sup>a</sup>                         | g <sub>fs</sub>     | V <sub>DS</sub> = 15 V, I <sub>D</sub> = 1.2 A                          | 2.6               | 2.5              | S            |
| Forward Voltage <sup>a</sup>                                  | $V_{SD}$            | I <sub>S</sub> = 1.1 A                                                  | 0.71              | 0.85             | V            |
| Dynamic <sup>b</sup>                                          | -                   |                                                                         | -                 |                  | <del>-</del> |
| Input Capacitance                                             | C <sub>iss</sub>    | V <sub>DS</sub> = 15 V, V <sub>GS</sub> = 0 V, f = 1 MHz                | 112               | 95               | pF           |
| Output Capacitance                                            | $C_{oss}$           |                                                                         | 17                | 17               |              |
| Reverse Transfer Capacitance                                  | C <sub>rss</sub>    |                                                                         | 7.5               | 9                |              |
| Total Gate Charge                                             | $Q_g$               | $V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 1.4 \text{ A}$   | 1.8               | 2.5              | nC           |
|                                                               |                     | V <sub>DS</sub> = 15 V, V <sub>GS</sub> = 4.5 V, I <sub>D</sub> = 1.4 A | 0.90              | 1.15             |              |
| Gate-Source Charge                                            | Q <sub>gs</sub>     |                                                                         | 0.40              | 0.40             |              |
| Gate-Drain Charge                                             | $Q_{gd}$            |                                                                         | 0.30              | 0.30             |              |


a. Pulse test; pulse width  $\leq$  300  $\mu$ s, duty cycle  $\leq$  2%. b. Guaranteed by design, not subject to production testing.





## SPICE Device Model Si1970DH Vishay Siliconix


### COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)













Note: Dots and squares represent measured data.