

Current Transducer LF 205-P/SP1

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

200 A

Electrical data

I _{PN}	Primary nominal r.m.s	s. current		200			Α
I _P	Primary current, measuring range			0 ± 420			Α
\mathbf{R}_{M}	Measuring resistance @		$T_{A} =$	70°C	T _ =	= 85°C)
			R _{M mir}	$\mathbf{R}_{M\;max}$	R _{M min}	R _{M max}	:
	with ± 12 V	$@ \pm 200 A_{max}$	0	71	0	69	Ω
		@ $\pm 420 A_{max}$	0	14	0	12	Ω
	with ± 15 V	@ ± 200 A _{max}	0	100	23	98	Ω
		@ ± 420 A _{max}	0	28	23	26	Ω
$I_{\rm SN}$	Secondary nominal r.m.s. current			100)		m A
K _N	Conversion ratio			1:	2000		
V _C	Supply voltage (± 5 %	5)		± 1	2 1	5	V
I _c	Current consumption	@ ± 15V		17	+ I _s		mA
$\check{\mathbf{V}}_{d}$	R.m.s. voltage for AC	isolation test, 50 Hz, 1	mn	3.5			k۷

Accuracy - Dynamic performance data

$\overset{\boldsymbol{x}}{\boldsymbol{e}}_{\scriptscriptstyle{L}}^{\scriptscriptstyle{G}}$	Overall accuracy @ I_{PN} , $T_A = 25^{\circ}C$ Linearity	± 0.5 < 0.1		% %
I _o I _{om} I _{ot}	Offset current @ $\mathbf{I}_p = 0$, $\mathbf{T}_A = 25^{\circ}\text{C}$ Residual current ¹⁾ @ $\mathbf{I}_p = 0$, after an overloop thermal drift of \mathbf{I}_0 - 40°C	 Typ ± 0.12		mA mA mA
t _{ra} t _r di/dt f	Reaction time @ 10 % of $I_{P \text{ max}}$ Response time ²⁾ @ 90 % of $I_{P \text{ max}}$ di/dt accurately followed Frequency bandwidth (- 3 dB)	< 500 < 1 > 100 DC 1	00	ns µs A/µs kHz

General data

T_{A}	Ambient operating temperature	- 40 + 85	°C
T _s	Ambient storage temperature	- 40 + 90	°C
$\ddot{R_s}$	Secondary coil resistance @ T _A = 70°C	33	Ω
Ü	@ $T_A = 85^{\circ}C$	35	Ω
m	Mass	58	g
	Standards 3)	EN 50178	

Notes: 1) The result of the coercive field of the magnetic circuit

- 2) With a di/dt of 100 A/µs
- 3) A list of corresponding tests is available.

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

• Mounting clips molded into the transducer housing, attach to printed circuit boards 1.6mm thick.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses High immunity to external interference
- · Current overload capability.

Applications

- · AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

011120/2

Dimensions LF 205-P/SP1 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening & secondary connection Recommanded PCB hole
- Primary through-hole
- Supplementary fastening Recommended PCB hole Recommended screws LEM code

± 0.2 mm

3 pins 0.63x0.56 mm Ø 0.9 mm

Ø 15.5 mm

2 holes Ø 1.75 mm

2.4 mm

KA22 x 6

47.30.60.006.0

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- Mounting clips molded into the transducer housing, attach to printed circuit board 1.6mm thick.

