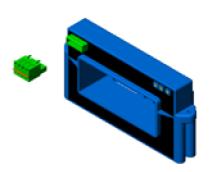


AC/DC Current transducer AHR-B420

The transducer for the electronic measurement of DC & distorted AC waveform currents, with galvanic isolation between the primary circuit (power) and the secondary circuit (measurement).

True r.m.s. 4-20 mA current output.


Electrical data						
Primary nominal DC & AC current		Primary AC current max. peak value 1)	Output currentt	Type		
I _{PN} (At rms)		I _P (A)	I_{OUT} (mA DC)			
500		2000	4-20	AHR 500	B420	
800		2500	4-20	AHR 800	B420	
1000		2000	4-20	AHR 1000	B420	
1500		2500	4-20	AHR 1500	B420	
2000		3000	4-20	AHR 2000	B420	
$R_{_{\perp}}$	Load resistance			< 300	Ω	
V _c	Supply voltage			+ 20 50	V DC	
	Current consumption			30 mA + I _{OUT}		
I _{SL}	Output c	urrent limitation		< 25	mΑ	
l _c I _{SL} Î _P	Overload capability (Ampere Turns)			30000	At	

Performance data							
X	Accuracy @ I_{PN} , $T_A = 25^{\circ}C$ (excluding offset)	< ± 1	% of I _{PN}				
$\mathbf{e}_{\scriptscriptstyle oldsymbol{oldsymbol{arepsilon}}}$	Linearity error (1% of I _{PN} ± I _{PN})	< ± 1.0	% of I_{PN}				
I _{OE}	Electrical offset current, $T_A = 25^{\circ}C$	4 mA <±1	1.0 % of I _{PN}				
TCI _{OE}	Temperature coefficient of I _{OE} (0+60 °C)	± 3.2	μΑ/K				
	(- 40+ 70 °C)	± 6.4	μΑ/K				
TCG	Temperature coefficient of G (% of reading)	± 0.15	%/K				
t,	Response time to 90% of I _{PN} step	< 150	ms				
BW	Frequency bandwidth (±1 dB)	DC 20 .	. 6000Hz				

General data					
\mathbf{T}_{A}	Ambient operating temperature	- 40 + 70	°C		
$T_{\rm s}$	Ambient storage temperature	- 40 + 85	°C		
m	Mass	260	g		
IP xx	Protection degree	IP20			

Note: 1) The max. peak AC current is the highest peak level of the primary signal that is taken into account for accurate true r.m.s. calculation. Yet the device is designed for maximum continuous true r.m.s. value equal to I_{PN}, whereas the output is limited by the above specified output limitation.

$I_{PN} = 500 ... 2000 A$

Features

- DC + distorted AC waveform currents measurement
- True r.m.s. output
- · Busbar or panel mounting
- Split core type
- Insulated plastic case recognized according to UL94-V0.

Advantages

- High isolation between primary and secondary circuits
- Eliminates insertion loss
- · Easy installation.

Applications

• AC power supplies or Motors:

True r.m.s. current sensing - the most accurate way to monitor power supply or motor input power

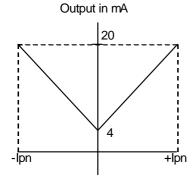
• VFD Controlled Loads:

VFD output current monitoring to indicate how the motor and the attached load are operating

• SCRs or Switch-mode Rectifiers:

Accurate measurement of output current

Renewable Energy Installations or Backup Batteries:


Continuous condition minitoring allowing automatic failure detection/ anticipation.

Current Transducer AHR-B420

Isolation characteristics Rated isolation voltage rms 600 with IEC 61010-1 according to the 61326 standards and following conditions: - Double insulation - Over voltage category CAT III - Pollution degree PD2 - Heterogeneous field Rms voltage for AC isolation test, 50Hz, 1min 5.2 kV dČp Creepage distance 11 m m dCI Clearance distance 11 m m Comparative tracking index (Group I) 600 CTI

Output polarity with DC input

Safety

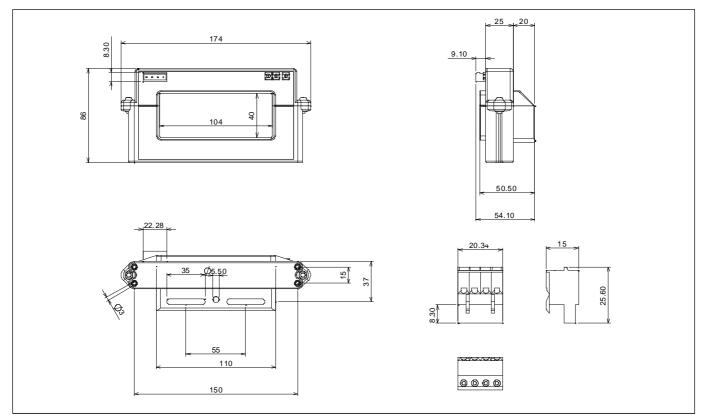
This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Installation and maintenance should be done with main power supply disconnected.

The operator must have an accreditation to install this material.

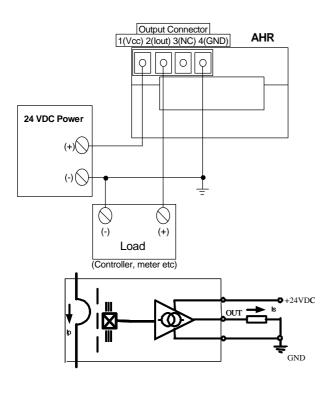
Caution! Risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (e.g. primary conductor).


Ignoring this warning can lead to injury and/or cause serious damage.

The user must take care of all protection guarantee against electrical shock.

This transducer is a built-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used.



Dimensions AHR-B420 (in mm. 1 mm = 0.0394 inch)

Connections

- Wires up to 2 mm ∅
- Female connector provided (screw terminals)

Mechanical characteristics

General tolerance ± 1 mm
Primary aperture 104 x 40 mm
Busbar fastening 1 hole Ø 5.5 mm & 2 slots 5.5 x 30 mm
Panel mounting 4 holes Ø 3.2 mm
Distance between holes axes 15 x 150 mm

Remarks

- The return busbar and primary conductor elbow must be located at least at a distance of 2.5 x the window length away from the transducer case.
- The temperature of the primary busbar can not exceed 90°C.
- Dynamic performances are the best with a primary busbar completely filling the primary aperture.
- This is a standard model. For different versions (supply voltages, different outputs, bidirectional measurements...), please contact us.