Description

The MIE-554H4 is a GaAlAs infrared LED having a peak wavelength as 850nm. It features ultra-high power, high response speed and molded package with higher radiant intensity. In addition to improving the S/N ratio in applied optical systems, the MIE-554H4 has greatly improved long-distance characteristics as well as significantly increased its range of applicability.

Features

- Ultra-high radiant intensity
- High response speed
- Standard T-1 3/4 (ϕ 5mm) package ,
- Peak wavelength $\lambda_p = 850 \text{ nm}$
- Radiant angle: 50°

Application

- Data communication
- SIR

Package Dimensions

Unite: mm (inches)

Notes:

- 1.Tolerance is \pm 0.25 mm (.010") unless otherwise noted.
- 2.Protruded resin under flange is 1.5 mm (.059") max.
- 3.Lead spacing is measured where the leads emerge from the package.

Absolute Maximum Ratings

'@
$$T_A = 25^{\circ}C$$

Parameter	Maximum Rating	Unit			
Power Dissipation	120	mW			
Peak Forward Current(300pps,10µs pulse)	1	A			
Continuos Forward Current	100	mA			
Reverse Voltage	5	V			
Operating Temperature Range	-55° C to $+100^{\circ}$ C				
Storage Temperature Range	-55°C to +100°C				
Lead Soldering Temperature	260°C for 5 seconds				

Optical-Electrical Characteristics:

@ $T_A = 25^{\circ}C$

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Radiant Intensity	$I_F=20mA$	Ie		2.1		mW/sr
Forward Voltage	I _F =50mA	$V_{\rm F}$		1.5	1.8	V
Reverse Current	$V_R=5V$	I_R			100	μΑ
Peak Wavelength	I _F =20mA	λ		850		nm
Spectral Bandwidth	I _F =20mA	Δλ		30		nm
View Angle	I _F =20mA	201/2		50		deg.
Rise Time	I _F =50mA	Tr		20		nsec
Fall Time	I _F =50mA	Tf		30		nsec

Typical Optical-Electrical Characteristic Curves:

FIG.1 SPECTRAL DISTRIBUTION

FORWARD VOLTAGE

Out Put Power To Value I_F=20mA 2.5 2 1.5 0.5 0 -20 20 Ambient Temperature T_A (°C)

FIG.3 RELATIVE RADIANT INTENSITY VS. VS. AMBIENT TEMPERATURE

3

VS. FORWARD CURRENT

