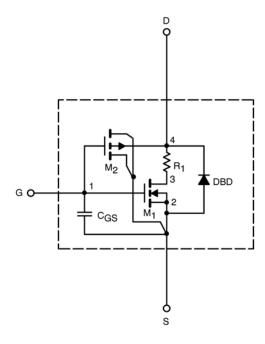


SPICE Device Model Si7114DN Vishay Siliconix

N-Channel 30-V (D-S) Fast Switching MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 10-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

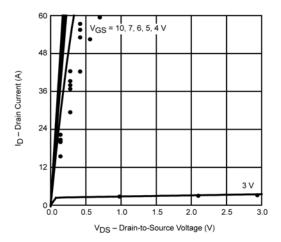
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

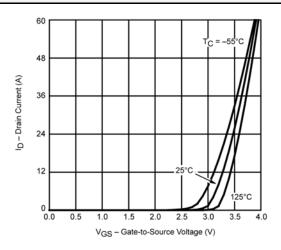
Document Number: 73054 www.vishay.com S-60075—Rev. B, 23-Jan-06

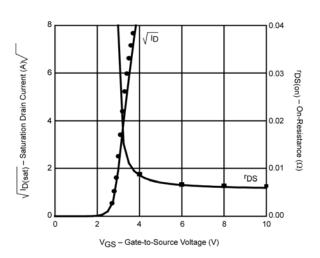
SPICE Device Model Si7114DN

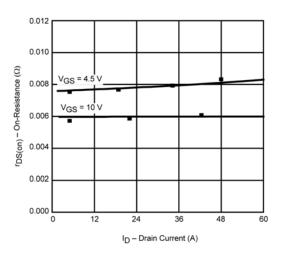
Vishay Siliconix

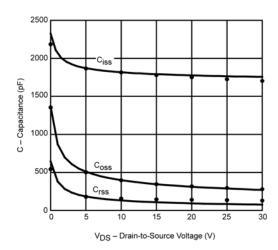
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static	•		-		
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS}~\geq 5~V,~V_{GS}$ = 10 V	788		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	V_{GS} = 10 V, I_D = 18.3 A	0.0060	0.0062	Ω
		V _{GS} = 4.5 V, I _D = 15 A	0.0077	0.080	
Forward Transconductance ^a	9 _{fs}	V_{DS} = 15 V, I_{D} = 18.3 A	133	97	S
Forward Voltage ^a	V_{SD}	$I_S = 3.2 \text{ A}, V_{GS} = 0 \text{ V}$	0.83	0.70	V
Dynamic ^b					
Total Gate Charge	Q_g	V _{DS} = 15 V, V _{GS} = 4.5 V, I _D = 18.3 A	13.3	12.5	nC
Gate-Source Charge	Q_{gs}		6.3	6.3	
Gate-Drain Charge	Q_{gd}		3.6	3.6	

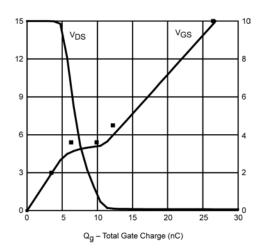

- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2\%.$ b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si7114DN


Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data