Description

BL1 102 Series is a single chip dialer IC using Si－gate CMOS process，it can provide signal for either Pulse or double Tone with multi－frequency dialing．It features key tone and hands－free dialing，＂ 0, ，＂ 9 dialing latch with first number，2array 32－digit number memory re－dialing，and 13－array 16－digit number memory etc．

Features

Operating voltage： $2.0 \sim 5.5 \mathrm{~V}$
Double Tone／Pulse selection with switch，pulse can be switched to double tone by pressing＊／T key．
3.579545 MHz crystal or ceramic resonator is used

Power on reset on chip
Minimum tone output duration： 100 ms
2 arrays of 32－digit number memory used for re－dialing and memory dialing respectively
3 arrays of 16 －digit number single key dialing memory
10 arrays of 32 －digit number double key dialing memory
Pulse break／make ratio can be $3 / 2$ or $2 / 1$ ，both alternative，and pulse speed is 10 PPS
Flash Time： $98 \mathrm{~ms}, 305 \mathrm{~ms}, 6000 \mathrm{~ms}$
Minimum tone output width： 93 ms ，minimum tone interval： 93 ms
Key tone output used for confirming the key pressed is right
Pulse， $\mathrm{P} \rightarrow \mathrm{T}$（Pulse to Tone）can be stored as a digit in memory
Easy operation with one－key redial，memory，pause and etc．
Standard 5×5 keyboard used
Key＂Mute＂used for mute talking
The dial－out staring with number＂ 0 ＂or＂ 9 ＂can be locked and chosen by pin．
CD－operating key
20 and 24 PDIP plastic Package

Application

Used as dialing circuit in telephone，complete relevant functions．
Block Diagram

SHANGHAI BELLING
Known from the above block diagram，it mainly made up of system clock generator，keyboard interface， data code，random storing，read／write counter，address lock and storing，system control logic，pulse generator，data／mode converter and double tone generator and other circuits．。

Pin Description

Symbol	22 Pin	24 Pin	I／0	Function
Row／colum	1－4，18－	1－4，20－	I	A valid key entry is defined by a single row being
n input	22	24		Connected to a single column
X T，X T	6，7	6，7	I／0	Oscillation I／O
T／P MUTE	8	8	O	The T／P MUTE is a conventional CMOS N－channel open drain output．When dialing and flash，the output is and will turn down the talking network．
MODE	14	16	I	Dialing mode selection．．When pin is connected to VSS，it is double tone multi－frequency mode when it is connected to VDD；it is pulse mode（ 10 ppS ）．
HKS	9	9	I	The pin is the hook switch input HKS $=1$ ，on HOOK state，chip in sleeping mode，no operation．HKS $=0$ ，on HOOK state，enable chip on normal operation．
B／M	16	18	I	Break／make ratio，pin selection． $B / M=1$ ，ratio is $60 / 40$ ； $B / M=0$ ，ratio is $66 / 33$ ．
VDD，VSS	17， 5	19， 5	I	Power and power ground input
X MUTE	13	15	0	Inverter output．Dialing under double tone mode， pin is high voltage；if dialing under pulse mode，the pin is low voltage．
HFI，HFO	－－	12， 13	I／O	Hands－free control details can be seen in table2．
KT	12	14	0	Key tone signal output．The frequency is 1.2 KHz ．
LOCK	$\begin{aligned} & 15 \\ & \text { (BL1102L) } \end{aligned}$	$\begin{aligned} & 17 \\ & (B L 1102 A L) \end{aligned}$	I	Once the pin is locked，dialing starting with ＂ 0 ＂or＂ 9 ＂and all the key input afterwards will become invalid．It will recover the original state after on hook
				LOCK Pin \quad Function
				VDD ${ }^{\text {c }} 0$＂和＂9＂dialing lim it
				Floating Normal
				VSS $\quad 00$＂dialing lim it
NC	$\begin{aligned} & 15 \\ & \text { (BL1102) } \end{aligned}$	$\begin{aligned} & 17 \\ & \text { (BL1102A) } \end{aligned}$	I	Not available
DP／C5	10	10	0	The DP／C5 is a conventional CMOS N－channel open drain output．Under tone state．Output will keep high；Under pulse state，output dialing pulse．
DTMF	11	11	0	Double tone multifrequency signal output

Table1．Circuit Function

Type	Pulse（PPS）	Flash（ms）	Break／Make Ratio（B／M）	Hands－free	Lock Control	Assembly （PDIP）
BL1102	10	$98 / 305 / 600$	Pin Selection	N	N	22
BL1102A	10	$98 / 305 / 600$	Pin Selection	Y	N	24
BL1102L	10	$98 / 305 / 600$	Pin Selection	N	Y	22
BL1102AL	10	$98 / 305 / 600$	Pin Selection	Y	Y	24

Table 2

Current State		Next State		
Hook switch	HFO	input	Hands－free output $($ HFO $)$	dialing
-	Low	HFI \downarrow	High	Y
On hook（HKS＝1）	High	HFI \downarrow	Low	-
Off hook（HKS＝0）	High	HFI \downarrow	Low	Y
On hook（HKS＝1）	-	Off hook	Low	Y
off hook（HKS＝0）	Low	on hook	Low	-
off hook $($ HKS＝0）	High	On hook	High	Y

Function Description

Keyboard Operation

R1	C1	C2	C3	C4	DP／C5
	1	2	3	EM1	MUTE
R2	4	5	6	EM2	CD
R3	7	8	9	EM3	F1
R4	＊／T	0	\＃	SAVE	F2
R5	RD	S	A	P	F3

MUTE：mute on／off A：自动拨号键
P：pause $\quad * / T$ ：＊\＆P \rightarrow T key CD：call disconnect EM1－EM3： 16 digit emergency number store disconnect RD：one－key redial
S：double－key store SAVE： 32 位备忘存储键
F1，F2，F3：flash time $98 / 305 / 600 \mathrm{~ms}$ store
\＃：Invalid under pulse state while refer to double tone multifrequency of the corresponding row and column

－Genera I Dialing

（ or and BFI ），D1，D2 ，．．Dn
a．．D1，D2 ，．．．Dn will be dialed out．
b．Dialing length is unlimited，but the re－dial is inhibited if it oversteps 32 digits
－Re－dialing
a ．on hook and re－dial ：off hook ，D1，D2 $, \ldots, D_{1}$ ，busy，then $\overline{a_{n} \text { hook }, ~ o f f ~ h o o k ~(o r ~ o f ~}$
hook and HFI \downarrow RD
or $\left(\operatorname{on}^{\text {thook }}\right.$ and $\overline{\mathrm{HFI}} \downarrow$ ，D1 ，D2，, Dn ，busy，then，HFI \downarrow ，RD

b ．direct re－dial ：off trod or（ $a_{n-m a d}$ and $\mathrm{HF} \downarrow$ ），D1，D2 ，Dn，busy ， on－hook，RD．If the dialing from $D 1$ to $D n$ is finished，press RD ，the pulse output pin will become low voltage for 2．2 minutes，and autamatically insert 6000 ms for pause．If press RD
before finish dialing from D1 to Dn，there will be no pulse output．
－＂Pause＂key operation
Off hook（or on－hook and $\overline{\mathrm{HFI}}$ ），D1，D2，$, \mathrm{P}, \mathrm{D} 3, \ldots, \mathrm{Dn}$
a．Pause function can be stored in memory storage．
b．Pause function can be performed when general dialing or re－dial or memory dialing．
－pulse \rightarrow tone mode convert（＊／T ）

a．If mode switch is set as pulse，output signal will be ：
D1，D2，\cdots ，Dn，pause（ 3.1 minutes），D1＇，D2＇，\cdots ，Dn＇ （ pulse）（ tone ）
b．If the mode switch is set as tone，output signal will be ：
D1，D2，\cdots, Dn，＊／T，D1＇，D2＇，\cdots, Dn＇
（ tone）（ tone）（ tone ）
c．If the tone mode remains since the number is dialed out，pulse mode can be recovered as long as do on－hook operation．
－FLASH
Off－hod（ or On－hook and HFI ）， F
a ．＂flash＂key can not be stored in the memory，but it enjoys the most high priority in all keyboard functions．
b ．after pressing＂flash＂key，dialer will recover to the original status．
－Number Storage

a ．Dialing out D1，D2，\cdots Dn first，then press the storage key S
b．D1，D2，\cdots ，Dn numbers are stored in the position＂Mn or Ln＂and dialed out．
c．$M n=M 1 \sim M 3 ; L n=0 \sim 9 ;{ }^{*}$ ，\＃，pause key（ P ）
a．D1，D2，\cdots, Dn are stored in Mn or L n but will not be dialed out．
b ．P and＊／T key can be stored in the memory as one digit ，P key indicates＂pause＂．
c．Once the storage function is finished or the state of hook switch changes，the storage mode will be released．
Memory dialing
a．One－key dial：

b．Two－key dial：
offthook（ or antook and HFT ），A，Ln
－＂Save＂Key

Off－hok
If dial ing from

b． $\begin{aligned} & \text { an－look then } \\ & \text { will be dialed out．}\end{aligned}$
－CD
Press $C_{C D}$ ，one pulse output will make call disconnected，and make the system recover to the original status．
－MUTE

Off－hook MUTE

Press＂MUTE＂，mute output will be generated．
－Mixed dialing

Dialing with＂Save＂key is valid only being first pressed after off hook，and the second serial numbers can be dialed after the number is sent out．

Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
DC Supply Voltage	$\mathrm{V}_{\mathrm{DD}} \sim \mathrm{V}_{\mathrm{SS}}$	$-0.3 \sim+7.0$	V
Input／output Voltage	V_{IL}	$\mathrm{V}_{\mathrm{Ss}}-0.3$	V
	$\mathrm{~V}_{\mathrm{IH}}$	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
	$\mathrm{~V}_{\mathrm{DL}}$	$\mathrm{V}_{\mathrm{Ss}}-0.3$	V
	$\mathrm{~V}_{\mathrm{DH}}$	$\mathrm{V}_{\mathrm{DD}}-0.3$	V
Power－Dissipation	P_{D}	120	mW
Operating Temperature	ToPR	$-20 \sim+70$	oC
Storage Temperature	TSTG	$-55 \sim+150$	oC

http：／／www．belling．com．cn	-5^{-}	$8 / 22 / 2006$ Wroteby 2006

SHANGHAI BELLING

DC Characteristic

（ $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=2.5 \mathrm{~V}$ ，Fosc $=3.58 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ ，all output unloaded except for being indicated．）
$\left.\left.\begin{array}{|l|l|l|l|l|l|l|}\hline \text { Parameter } & \text { Symbol } & \text { Test Condition } & \text { Min．} & \text { Typical } & \text { Max．} & \text { Unit } \\ \hline \text { Operating voltage } & \begin{array}{l}\text { VDD } \\ \text { tone } \\ \text { pulse } \\ \text { memory }\end{array} & \begin{array}{l}2.0 \\ 2.0 \\ 1.0\end{array} & & 5.5 \\ 5.5\end{array}\right] \begin{array}{l}5.5\end{array}\right]$

AC characteristic

Parameter	Symbol	Test Condition	Min．	Typical	Max．	Unit
Time of keyin debounce	TKID		－－	20	－－	ms
Time of key release debounce	Tkrd		－－	20	－－	ms
Time of key tone defer	Tкd		－－	20	－－	ms
Time of One－key re－dial＂pause＂	Trb		－－	2.2	－－	s
Time of pulse T／P mute defer	TMD	$\begin{aligned} & \mathrm{B} / \mathrm{M}=1 \\ & \mathrm{~B} / \mathrm{M}=0 \end{aligned}$	--	$\begin{aligned} & \hline 40 \\ & 33.3 \end{aligned}$	--	ms
Pre－digit pause	TPDP	$\begin{aligned} & \mathrm{B} / \mathrm{M}=1 \\ & \mathrm{~B} / \mathrm{M}=0 \\ & \hline \end{aligned}$	－－	$\begin{aligned} & \hline 40 \\ & 33.3 \\ & \hline \end{aligned}$	－－	ms
pulse speed	FPR		－－	10	－－	pps
Time in data pace（auto－dial）	$\mathrm{T}_{\text {TD }}$		－－	800	－－	ms
Break／make ratio	B／M	$\begin{aligned} & \mathrm{B} / \mathrm{M}=1 \\ & \mathrm{~B} / \mathrm{M}=0 \\ & \hline \end{aligned}$	－－	$\begin{aligned} & \hline 60: 40 \\ & \text { 66.6:33.3 } \\ & \hline \end{aligned}$	－－	\％
Tone width	TTD	Automatic dialing	－－	93	－－	ms
Inter tone pace	TтD	Automatic dialing	－－	93	－－	ms
Time of flash pause	$\mathrm{T}_{\text {fb }}$		$\begin{aligned} & \text {-- } \\ & \text {-- } \end{aligned}$	$\begin{aligned} & 98 \\ & 305 \\ & 600 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-- \\ & \text {-- } \\ & \hline-- \end{aligned}$	ms
Time of Pause	TP		－－	3.1	－－	s
Row－group frequency	$\begin{array}{\|l\|l} \hline \text { F1 } \\ \text { F2 } \\ \text { F3 } \\ \text { F4 } \\ \hline \end{array}$	row1 row2 row3 row4		$\begin{aligned} & 699 \\ & 766 \\ & 848 \\ & 948 \\ & \hline \end{aligned}$		Hz
Column－group frequency	$\begin{array}{\|l} \hline \text { F5 } \\ \text { F6 } \\ \text { F7 } \\ \hline \end{array}$	column1 column2 column3		$\begin{aligned} & 1216 \\ & 1332 \\ & 1472 \\ & \hline \end{aligned}$		Hz
Key tone frequency	Fkt		－－	1.2	－－	kHz
Time of one－key re－dial pause	TPR		－－	600	－－	ms

NB：

1．If it is operated on the following normal situation，the oscillation parameters are recommended as：：
Rs＜ 100Ω ，Lm： $96 \mathrm{mH}, \mathrm{Cm}: 0.02 \mathrm{pF}, \mathrm{Cn}: 5 \mathrm{pF}, \mathrm{C} 1: 18 \mathrm{pF}$
OSC ：3．57945 Mhz ± 0.02 \％
2．the accuracy of oscillator frequency will effect the above－mentioned times．

Timing Diagram

Pulse mode normal dialing timing diagram

Tone mode redial timing diagram

Pulse mode timing diagram

Tone mode normal timing diagram

hands－free control function timing

Pause function timing diagram

General dial：pulse \rightarrow tone $(\mathrm{P} \rightarrow \mathrm{T})$ transfer timing diagram Flash function operation timing diagram

＂Mute＂key function operation timing diagram

Application Circuit

