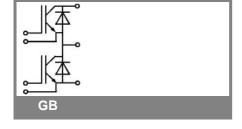

SEMiX 604GB176HDs

Trench IGBT Modules

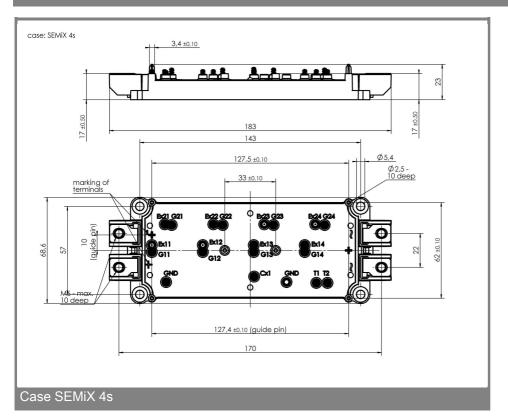
SEMiX 604GB176HDs

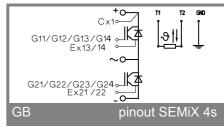
Target Data

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- · High short circuit capability

Typical Applications


- AC inverter drives
- UPS
- Electronic welders


Absolute	Maximum Ratings	T_c = 25 °C, unless otherwise	T _c = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		1700	V					
V _{CES}	T _c = 25 (80) °C	600 (430)	Α					
I _{CRM}	t _p = 1 ms	800	Α					
V_{GES}		± 20	V					
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V_{isol}	AC, 1 min.	4000	V					
Inverse diode								
I _F	T _c = 25 (80) °C	550 (370)	Α					
I _{FRM}	$t_p = 1 \text{ ms}$	800	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 25 \text{ °C}$	3800	Α					

Characte	ristics	T _c = 25 °C,	c = 25 °C, unless otherwise specified				
Symbol	Conditions	min.	typ.	max.	Units		
IGBT					•		
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 16 \text{ mA}$	5,2	5,8	6,4	V		
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) °C$			2,4	mA		
V _{CE(TO)}	T _j = 25 (125) °C		1 (0,9)	1,2 (1,1)	V		
r_{CE}	$V_{GE} = 0 \text{ V, T}_{j} = 25 (125) ^{\circ}\text{C}$		2,5 (3,9)		mΩ		
V _{CE(sat)}	$I_{Cnom} = 400 \text{ A}, V_{GE} = 15 \text{ V},$		2 (2,45)	2,45 (2,9)	V		
	$T_j = 25 (125)$ °C, chip level						
C _{ies}	under following conditions		28,4		nF		
C _{oes}	$V_{GE} = 0, V_{CE} = 25 \text{ V}, f = 1 \text{ MHz}$		1,5		nF		
C _{res}			1,2		nF		
L _{CE}			22		nΗ		
R _{CC'+EE'}	terminal-chip, T _c = 25 (125) °C				mΩ		
$t_{d(on)}/t_{r}$	V _{CC} = 1200 V, I _{Cnom} = 400 A				ns		
$t_{d(off)}/t_{f}$	V _{GE} = ± 15 V				ns		
$E_{on} (E_{off})$	$R_{Gon} = R_{Goff} = \Omega, T_j = 125 ^{\circ}C$		240 (140)		mJ		
Inverse diode							
$V_F = V_{EC}$	I_{Fnom} = 400 A; V_{GE} = 0 V; T_j = 25 (125) °C, chip level		1,7 (1,7)	1,9 (1,9)	V		
$V_{(TO)}$	T _j = 25 (125) °C		1,1 (0,9)	1,3 (1,1)	V		
r _T	$T_{j} = 25 (125) ^{\circ}C$		1,5 (2)	1,5 (2)	$m\Omega$		
I _{RRM}	I_{Fnom} = 400 A; T_j = 25 (125) °C				Α		
Q_{rr}	di/dt = A/μs				μC		
E _{rr}	V _{GE} = -15 V				mJ		
Thermal	characteristics						
R _{th(j-c)}	per IGBT			0,051	K/W		
$R_{th(j-c)D}$	per Inverse Diode			0,09	K/W		
R _{th(j-c)FD}	per FWD				K/W		
R _{th(c-s)}	per module		0,03		K/W		
Tempera	ture sensor				_		
R ₂₅	T _c = 25 °C		5 ±5%		kΩ		
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2 - 1/T_1)]$; T[K];B		3420		K		
Mechanical data							
M_s/M_t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm		
W			390		g		

SEMIX 604GB176HDs

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.