Bipolar NPN Transistor

High Speed, High Gain Bipolar NPN Transistor Integrating an Antisaturation Network and a Transient Voltage Suppression Capability

The BUD43D2 is a state-of-the-art bipolar transistor. Tight dynamic characteristics and lot to lot minimum spread make it ideally suitable for light ballast applications.

Main Features:

- Free Wheeling Diode Built In
- Flat DC Current Gain
- Fast Switching Times and Tight Distribution
- "6 Sigma" Process Providing Tight and Reproducible Parameter Spreads

Two Versions:

- BUD43D2–1: Case 369 for Insertion Mode
- BUD43D2: Case 369A for Surface Mount Mode

MAXIMUM RATINGS

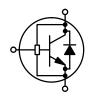
Rating	Symbol	Value	Unit
Collector–Emitter Sustaining Voltage	V _{CEO}	400	Vdc
Collector–Base Breakdown Voltage	V_{CBO}	700	Vdc
Collector–Emitter Breakdown Voltage	V _{CES}	700	Vdc
Emitter–Base Voltage	V _{EBO}	12	Vdc
Collector Current – Continuous – Peak (Note 1)	I _C I _{CM}	2.0 5.0	Adc
Base Current – Continuous – Peak (Note 1)	I _B I _{BM}	1.0 2.0	Adc

TYPICAL GAIN

Typical Gain	h _{FE}		_
@ $I_C = 100 \text{ mA}, V_{CE} = 1 \text{ V}$		55	
@ $I_C = 0.3 \text{ A}, V_{CE} = 1 \text{ V}$		32	

THERMAL CHARACTERISTICS

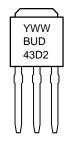
Characteristic	Symbol	Value	Unit
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	25 0.2	W W/°C
Operating and Storage Temperature Range	T _J , T _{stg}	-65 to +150	°C
Thermal Resistance – Junction–to–Case	$R_{\theta JC}$	5.0	°C/W
Thermal Resistance – Junction–to–Ambient	$R_{\theta JA}$	71.4	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 sec.	T _L	260	°C


^{1.} Pulse Test: Pulse Width = 5.0 ms, Duty Cycle = 10%

ON Semiconductor®

http://onsemi.com

2 AMPERES 700 VOLTS 25 WATTS POWER TRANSISTOR



DPAK CASE 369 STYLE 1

DPAK CASE 369A STYLE 1

MARKING DIAGRAMS

Y = Year WW = Work Week BUD43D2 = Device Code

ORDERING INFORMATION

Device Package		Shipping		
BUD43D2-1	DPAK	75 Units/Rail		

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						-
Collector–Emitter Sustaining Voltage (I _C = 100 mA, L = 2	25 mH)	V _{CEO(sus)}	400	470	-	Vdc
Collector–Base Breakdown Voltage (I _{CBO} = 1 mA)	@ T _C = 25°C	V_{CBO}	700	920	-	Vdc
Emitter-Base Breakdown Voltage (I _{EBO} = 1 mA)	@ T _C = 25°C	V _{EBO}	12	14.5	-	Vdc
Collector Cutoff Current $(V_{CE} = Rated V_{CEO}, I_B = 0)$	@ T _C = 25°C @ T _C = 125°C	I _{CEO}	_ _	- -	50 500	μAdo
Collector Cutoff Current ($V_{CE} = Rated V_{CES}, V_{EB} = 0$) ($V_{CE} = 500 \text{ V}, V_{EB} = 0$)	@ T _C = 25°C @ T _C = 125°C @ T _C = 125°C	I _{CES}	- - -	- - -	50 500 100	μAdo
Emitter–Cutoff Current (V _{EB} = 10 Vdc, I _C = 0)	@ T _C = 25°C	I _{EBO}	_	-	100	μAdo
ON CHARACTERISTICS						
Base–Emitter Saturation Voltage ($I_C = 0.4$ Adc, $I_B = 40$ mAdc)	@ T _C = 25°C @ T _C = 125°C	V _{BE(sat)}	_ _	0.78 0.65	0.9 0.8	Vdc
$(I_C = 1 \text{ Adc}, I_B = 0.2 \text{ Adc})$	@ T _C = 25°C @ T _C = 125°C		<u>-</u>	0.85 0.76	1.0 0.9	
Collector–Emitter Saturation Voltage (I _C = 0.4 Adc, I _B = 20 mAdc)	@ T _C = 25°C @ T _C = 125°C	V _{CE(sat)}	1 1	0.40 0.60	0.65 1.0	Vdc
$(I_C = 0.4 \text{ Adc}, I_B = 40 \text{ mAdc})$	@ T _C = 25°C @ T _C = 125°C			0.20 0.20	0.4 0.5	
$(I_C = 1 \text{ Adc}, I_B = 0.2 \text{ Adc})$	@ T _C = 25°C @ T _C = 125°C		- -	0.25 0.30	0.5 0.6	
DC Current Gain (I _C = 0.4 Adc, V _{CE} = 1 Vdc)	@ T _C = 25°C @ T _C = 125°C	h _{FE}	20 18	32 26	_	_
$(I_C = 1 \text{ Adc}, V_{CE} = 1 \text{ Vdc})$	@ T _C = 25°C @ T _C = 125°C		10 7.0	15 9.5	- -	
$(I_C = 2 \text{ Adc}, V_{CE} = 5 \text{ Vdc})$	@ T _C = 25°C		8.0	13	_	
NODE CHARACTERISTICS						
Forward Diode Voltage (I _{EC} = 0.2 Adc)	@ T _C = 25°C	V _{EC}	-	0.8	1.0	Vdc
$(I_{EC} = 0.2 \text{ Adc})$	@ T _C = 125°C		-	0.6	_	
(I _{EC} = 0.4 Adc)	@ T _C = 25°C		-	0.9	1.2	
(I _{EC} = 1 Adc)	@ T _C = 25°C		-	1.1	1.5	
Forward Recovery Time (see Figure 22) (I _F = 0.2 Adc, di/dt = 10 A/μs)	@ T _C = 25°C	T _{fr}	_	415	_	ns
$(I_F = 0.4 \text{ Adc}, \text{ di/dt} = 10 \text{ A/}\mu\text{s})$	@ T _C = 25°C			390	-	1
$(I_F = 1 \text{ Adc, di/dt} = 10 \text{ A/}\mu\text{s})$	@ T _C = 25°C		-	340	_	1

Dynamic Saturation Voltage		Characteristic			Symbol	Min	Тур	Max	Unit
	DYNAMIC SATURATION	VOLTAGE				•			
Dynamic Saturation		~	@ 1 μs		V _{CE(dsat)}	- -		- -	V
C = 1 A R R R R R R R R R	Dynamic Saturation		@ 3 μs			_ _		1 1	
VCC = 300 Vdc @ 3 µs @ 7c = 25°C	Voltage		@ 1 μs			_ _		1 1	
Current Gain Bandwidth (I _C = 0.5 Adc, V _{CE} = 10 Vdc, I _E = 0, f = 1 MHz) f _T - 13 - MHz Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1 MHz) C _{ob} - 50 75 pF Input Capacitance (V _{CB} = 8 Vdc, f = 1 MHz) C _{ob} - 250 500 pF WITCHING CHARACTERISTICS: Resistive Load (V _{clamp} = 300 V, V _{CC} = 15 V, L = 200 µH) Turn-on Time I _C = 1 Adc, I _{B1} = 0.2 Adc I _{B2} = 0.5 Adc V _{CC} = 300 Vdc © T _C = 25°C V _C = 10 V V _C =			@ 3 μs			- -		-	
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1 MHz) C _{0b} − 50 75 pF Input Capacitance (V _{CB} = 8 Vdc, f = 1 MHz) C _{0b} − 250 500 pF SWITCHING CHARACTERISTICS: Resistive Load (V _{clamp} = 300 V, V _{CC} = 15 V, L = 200 μH) Turn-on Time I _C = 1 Adc, I _{B1} = 0.2 Adc I _{B2} = 0.5 Adc V _{CC} = 300 Vdc ⊕ T _C = 25°C ⊕ T _C I _c n − 200 − − 250 ns Turn-on Time I _C = 1.5 Adc, I _{B1} = 50 mAdc I _{B2} = 250 mAdc V _{CC} = 300 Vdc ⊕ T _C = 25°C ⊕ T _C I _{off} − 1.5 1.75 µs Turn-on Time I _C = 0.5 Adc, I _{B1} = 50 mAdc I _{B2} = 250 mAdc V _{CC} = 300 Vdc ⊕ T _C = 25°C ⊕ T _C I _{off} − 1.5 1.75 µs Turn-of Time I _C = 0.5 Adc, I _{B1} = 50 mAdc I _{B2} = 250 mAdc V _{CC} = 300 Vdc ⊕ T _C = 25°C ⊕ T _C I _{off} − 2.50 300 ms ns Turn-of Time I _C = 0.4 Adc I _{B1} = 40 mAdc I _{B2} = 25°C ⊕ T _C ⊕ T _C = 25°C ⊕ T _C I _{off} − 90 150 ns WITCHING CHARACTERISTICS: Inductive Load E T _C =	YNAMIC CHARACTERI	STICS				_			
Input Capacitance (V _{EB} = 8 Vdc, f = 1 MHz)	Current Gain Bandwidth	$(I_C = 0.5 \text{ Adc}, V_{CE} =$	10 Vdc, f	= 1 MHz)	f _T	-	13	_	MHz
SWITCHING CHARACTERISTICS: Resistive Load (V _{clamp} = 300 V, V _{CC} = 15 V, I = 200 µH)	Output Capacitance (V _{CE}	$_{B} = 10 \text{ Vdc}, I_{E} = 0, f = 0$	= 1 MHz)		C _{ob}	_	50	75	pF
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Capacitance (V _{EB} =	= 8 Vdc, f = 1 MHz)			C _{ib}	_	250	500	pF
C = 1 Adc, I _{B1} = 0.2 Adc Q T _C = 125°C C Toff C Toff To	SWITCHING CHARACTE	RISTICS: Resistive	Load (V _{cla}	_{amp} = 300 V, V _{CC} =	= 15 V, L = 200) μH)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-on Time				t _{on}	- -		250 –	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-off Time				t _{off}			1.75 -	μS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-on Time	$I_{B2} = 250 \text{ mAdc}$			t _{on}	-			ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-off Time				t _{off}	800 -	- 1300	1100 -	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWITCHING CHARACTE	RISTICS: Inductive	Load						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time				t _f	_ _			ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Storage Time	$I_{B1} = 40 \text{ mA}$.dc		t _s			0.75 –	μS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Crossover Time	-BZ			t _c				ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time				t _f	- -			ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Storage Time	$I_{B1} = 0.2 \text{ Ac}$	dc	@ T _C = 25°C @ T _C = 125°C	t _s	- -		1.5 _	μs
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Crossover Time				t _c			175 -	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time				t _f				ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Storage Time	$I_{B1} = 160 \text{ mAdc}$			t _s	2.5 -	2.8	2.8	μs
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Crossover Time				t _c			250 –	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time	$I_{B1} = 40 \text{ mAdc}$			t _f	_ _			ns
Crossover Time	Storage Time				t _s		2.2	2.0	μs
	Crossover Time	52			t _c				ns



Figure 1. DC Current Gain @ V_{CE} = 1 V

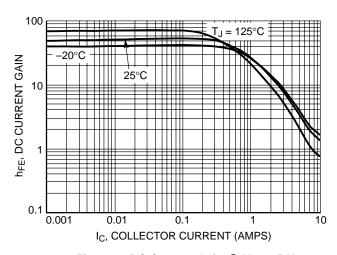


Figure 2. DC Current Gain @ V_{CE} = 5 V

Figure 3. Collector Saturation Region

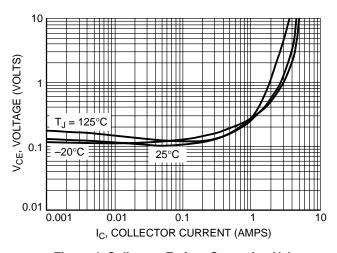


Figure 4. Collector–Emitter Saturation Voltage $I_C/I_B = 5$

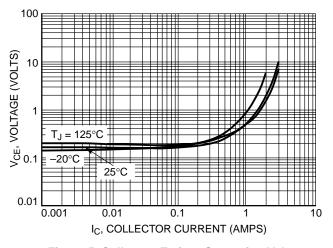


Figure 5. Collector–Emitter Saturation Voltage $I_C/I_B = 10$

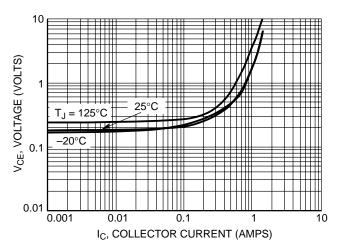


Figure 6. Collector–Emitter Saturation Voltage $I_C/I_B = 20$

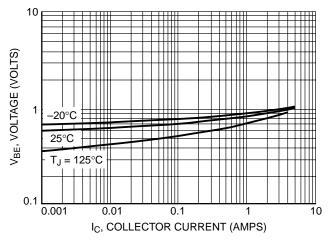


Figure 7. Base–Emitter Saturation Region $I_{\rm C}/I_{\rm B}=5$

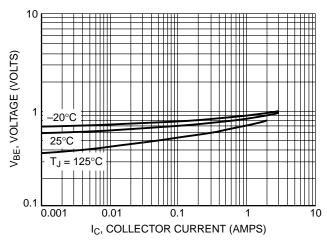


Figure 8. Base–Emitter Saturation Region $I_C/I_B = 10$

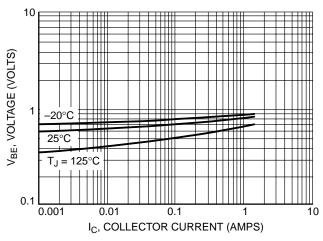


Figure 9. Base–Emitter Saturation Region $I_C/I_B = 20$

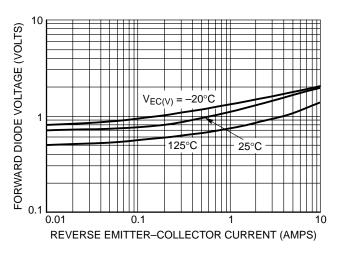


Figure 10. Forward Diode Voltage

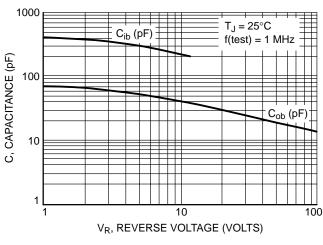


Figure 11. Capacitance

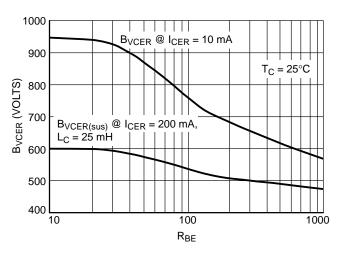


Figure 12. $B_{VCER} = f(R_{BE})$

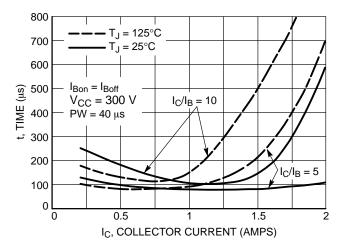


Figure 13. Resistive Switching, ton

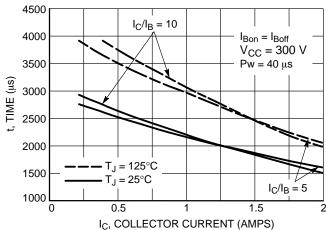


Figure 14. Resistive Switching, toff

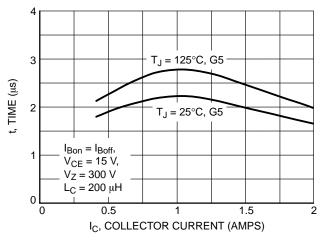


Figure 15. Inductive Storage Time, t_{si} @ G = 5

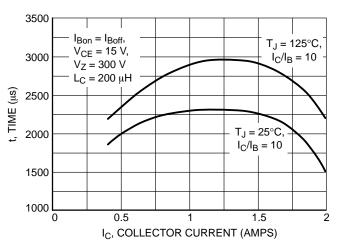


Figure 16. Inductive Storage Time, t_{si} @ I_C/I_B = 10

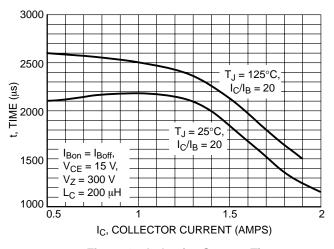


Figure 17. Inductive Storage Time, $t_{si} @ I_C/I_B = 20$

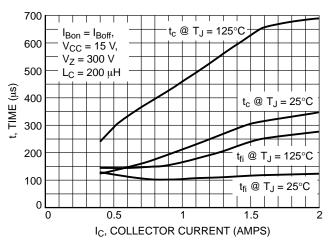


Figure 18. Inductive Fall and Cross Over Time, t_{fi} and t_{c} @ h_{FE} = 5

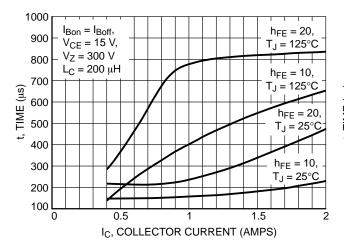


Figure 19. Inductive Fall Time, t_{fi} @ h_{FE} = 10 and 20

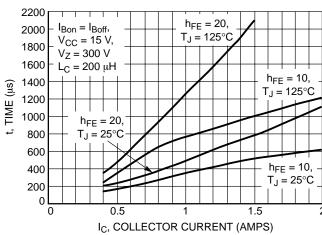


Figure 20. Inductive Cross Over Time, $t_c @ h_{FE} = 10$

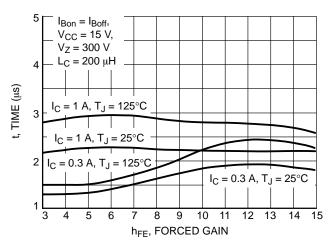


Figure 21. Inductive Storage Time, tsi

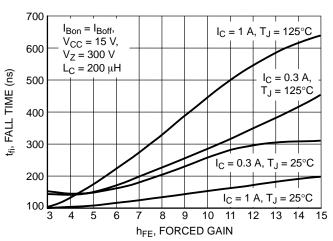


Figure 22. Inductive Fall Time, t_f

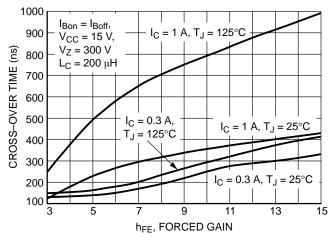


Figure 23. Inductive Cross Over Time, t_c

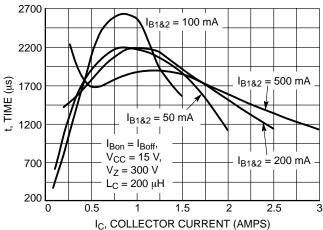


Figure 24. Inductive Storage Time, tsi

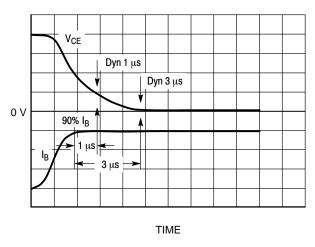


Figure 25. Dynamic Saturation Voltage Measurements

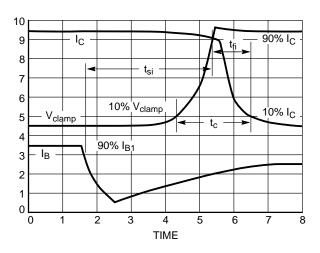
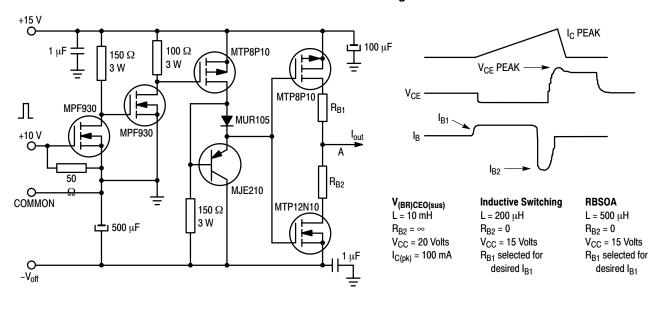



Figure 26. Inductive Switching Measurements

Table 1. Inductive Load Switching Drive Circuit

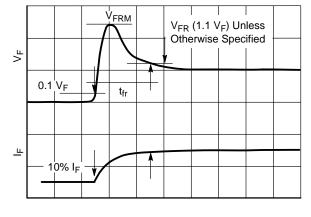


Figure 27. t_{fr} Measurement

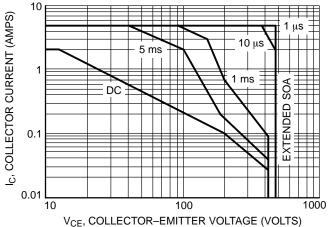


Figure 28. Forward Bias Safe Operating Area, Maximum Rating

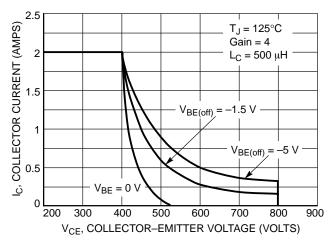


Figure 29. Reverse Bias Safe Operating Area,
Maximum Rating

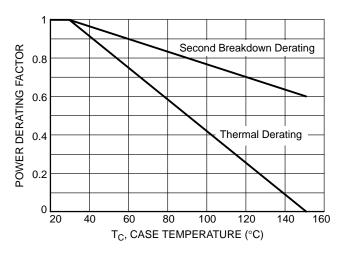


Figure 30. Power Derating

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 28 is based on $T_C = 25^{\circ}C$; $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $T_C > 25^{\circ}C$. Second Breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on

Figure 28 may be found at any case temperature by using the appropriate curve on Figure 30.

 $T_{J(pk)}$ may be calculated from the data in Figure 31. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn—off with the base to emitter junction reverse biased. The safe level is specified as reverse biased safe operating area (Figure 29). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode.

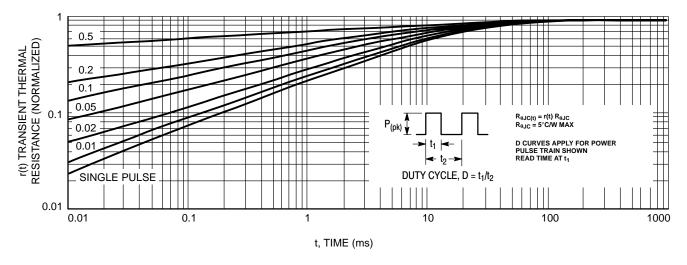
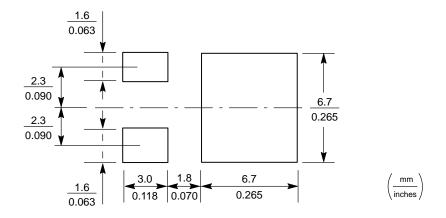



Figure 31. Thermal Response

Minimum Pad Sizes Recommended for Surface Mounted Applications

TYPICAL SOLDER HEATING PROFILE

For any given circuit board, there will be a group of control settings that will give the desired heat pattern. The operator must set temperatures for several heating zones, and a figure for belt speed. Taken together, these control settings make up a heating "profile" for that particular circuit board. On machines controlled by a computer, the computer remembers these profiles from one operating session to the next. Figure 32 shows a typical heating profile for use when soldering a surface mount device to a printed circuit board. This profile will vary among soldering systems but it is a good starting point. Factors that can affect the profile include the type of soldering system in use, density and types of components on the board, type of solder used, and the type of board or substrate material being used. This profile shows temperature versus time.

The line on the graph shows the actual temperature that might be experienced on the surface of a test board at or near a central solder joint. The two profiles are based on a high density and a low density board. The Vitronics SMD310 convection/infrared reflow soldering system was used to generate this profile. The type of solder used was 62/36/2 Tin Lead Silver with a melting point between 177–189°C. When this type of furnace is used for solder reflow work, the circuit boards and solder joints tend to heat first. The components on the board are then heated by conduction. The circuit board, because it has a large surface area, absorbs the thermal energy more efficiently, then distributes this energy to the components. Because of this effect, the main body of a component may be up to 30 degrees cooler than the adjacent solder joints.

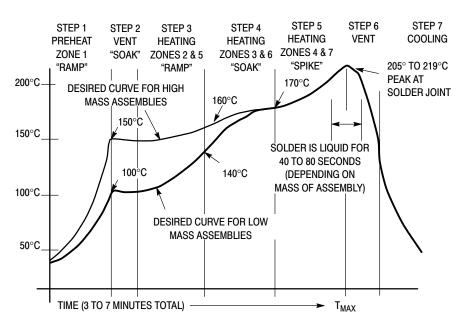
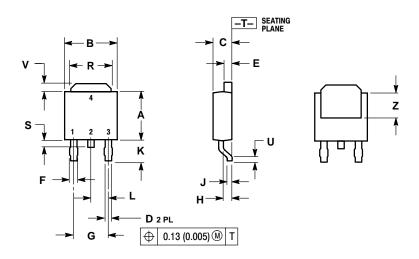
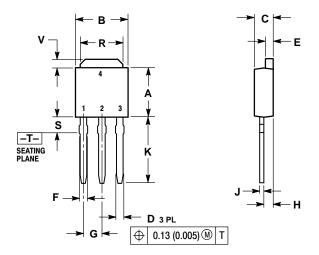



Figure 32. Typical Solder Heating Profile

PACKAGE DIMENSIONS

DPAK CASE 369A-13 **ISSUE AB**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.


	INC	HES	MILLIN	ETERS	
DIM	MIN	MIN MAX		MAX	
Α	0.235	0.250	5.97	6.35	
В	0.250	0.265	6.35	6.73	
C	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.033	0.040	0.84	1.01	
F	0.037	0.047	0.94	1.19	
G	0.180	BSC	4.58	BSC	
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
K	0.102	0.114	2.60	2.89	
L	0.090	0.090 BSC		BSC	
R	0.175	0.215	4.45	5.46	
S	0.020	0.050	0.51	1.27	
5	0.020		0.51		
٧	0.030	0.050	0.77	1.27	
Z	0.138		3.51		

- STYLE 1:
 PIN 1. BASE
 2. COLLECTOR
 3. EMITTER
 4. COLLECTOR

PACKAGE DIMENSIONS

DPAK STRAIGHT LEADS

CASE 369-07 ISSUE M

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIN	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.250	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.033	0.040	0.84	1.01
F	0.037	0.047	0.94	1.19
G	0.090 BSC		2.29 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.175	0.215	4.45	5.46
S	0.050	0.090	1.27	2.28
V	0.030	0.050	0.77	1 27

STYLE 1: PIN 1.

- COLLECTOR EMITTER 2. 3.
- COLLECTOR

ON Semiconductor and War registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031

Phone: 81-3-5740-2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.