BC556 THRU BC559 #### **Small Signal Transistors (PNP)** Dimensions in inches and (millimeters) #### **FEATURES** - PNP Silicon Epitaxial Planar Transistors for switching and AF amplifier applications. - These transistors are subdivided into three groups A, B and C according to their current gain. The type BC556 is available in groups A and B, however, the types BC557 and BC558 can be supplied in all three groups. The BC559 is a low-noise type available in all three groups. As complementary types, the NPN transistors BC546 ... BC549 are recommended. - On special request, these transistors are also manufactured in the pin configuration TO-18. #### **MECHANICAL DATA** Case: TO-92 Plastic Package Weight: approx. 0.18 g #### MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS Ratings at 25 °C ambient temperature unless otherwise specified | | Symbol | Value | Unit | |---|-----------------------|-------------------|-------------| | Collector-Base Voltage BC: BC: BC558, BC: | 557 –V _{CBO} | 80
50
30 | V
V
V | | Collector-Emitter Voltage BC: BC: BC558, BC: | 557 –V _{CES} | 80
50
30 | V
V
V | | Collector-Emitter Voltage BC: | 557 –V _{CEO} | 65
45
30 | V
V
V | | Emitter-Base Voltage | -V _{EBO} | 5 | V | | Collector Current | -I _C | 100 | mA | | Peak Collector Current | -I _{CM} | 200 | mA | | Peak Base Current | -I _{BM} | 200 | mA | | Peak Emitter Current | I _{EM} | 200 | mA | | Power Dissipation at T _{amb} = 25 °C | P _{tot} | 500 ¹⁾ | mW | | Junction Temperature | Tj | 150 | °C | | Storage Temperature Range | T _S | -65 to +150 | °C | ¹⁾ Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case. # **BC556 THRU BC559** #### **ELECTRICAL CHARACTERISTICS** Ratings at 25 °C ambient temperature unless otherwise specified | | Symbol | Min. | Тур. | Max. | Unit | | |---|--|-----------------------|--|-------------------------------|----------------------------|--| | h-Parameters
at $-V_{CE} = 5 \text{ V}$, $-I_{C} = 2 \text{ mA}$, $f = 1 \text{ kHz}$
Current Gain Current Gain Group A
B | h _{fe} | | 220
330 | | | | | Input Impedance Current Gain Group A B C | h _{fe}
h _{ie}
h _{ie}
h _{ie} | 1.6
3.2
6 | 600
2.7
4.5
8.7 | -
4.5
8.5
15 | -
kΩ
kΩ
kΩ | | | Output Admittance Current Gain Group A B C | h _{oe}
h _{oe}
h _{oe} | _
_
_ | 18
30
60 | 30
60
110 | μS
μS
μS | | | Reverse Voltage Transfer Ratio Current Gain Group A B C | h _{re}
h _{re}
h _{re} | -
-
- | 1.5 · 10 ⁻⁴
2 · 10 ⁻⁴
3 · 10 ⁻⁴ | _
_
_ | _
_
_ | | | DC Current Gain
at –V _{CE} = 5 V, –I _C = 10 μA | | | | | | | | Current Gain Group A
B
C | h _{FE}
h _{FE}
h _{FE} | _
_
_ | 90
150
270 | _
_
_ | _
_
_ | | | at $-V_{CE} = 5 \text{ V}$, $-I_{C} = 2 \text{ mA}$ Current Gain Group A B C | h _{FE}
h _{FE}
h _{FE} | 110
200
420 | 180
290
500 | 220
450
800 | _
_
_ | | | at $-V_{CE} = 5 \text{ V}$, $-I_{C} = 100 \text{ mA}$
Current Gain Group A
B
C | h _{FE}
h _{FE} | -
-
- | 120
200
400 | _
_
_ | _
_
_ | | | Thermal Resistance Junction to Ambient Air | R _{thJA} | _ | _ | 250 ¹⁾ | K/W | | | Collector Saturation Voltage
at $-I_C = 10$ mA, $-I_B = 0.5$ mA
at $-I_C = 100$ mA, $-I_B = 5$ mA | -V _{CEsat}
-V _{CEsat} | _
_ | 80
250 | 300
650 | mV
mV | | | Base Saturation Voltage
at $-I_C = 10$ mA, $-I_B = 0.5$ mA
at $-I_C = 100$ mA, $-I_B = 5$ mA | −V _{BEsat}
−V _{BEsat} | _
_ | 700
900 | _
_ | mV
mV | | | Base-Emitter Voltage
at $-V_{CE} = 5 \text{ V}$, $-I_{C} = 2 \text{ mA}$
at $-V_{CE} = 5 \text{ V}$, $-I_{C} = 10 \text{ mA}$ | −V _{BE}
−V _{BE} | 600
- | 660
- | 750
800 | mV
mV | | | | -ICES -ICES -ICES -ICES -ICES -ICES -ICES | -
-
-
-
- | 0.2
0.2
0.2
-
- | 15
15
15
4
4
4 | nA
nA
nA
μA
μA | | | 1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case. | | | | | | | # **BC556 THRU BC559** #### **ELECTRICAL CHARACTERISTICS** Ratings at 25 °C ambient temperature unless otherwise specified | | Symbol | Min. | Тур. | Max. | Unit | |---|------------------|------|------|---------|----------| | Gain-Bandwidth Product
at –V _{CE} = 5 V, –I _C = 10 mA, f = 100 MHz | f _T | _ | 150 | _ | MHz | | Collector-Base Capacitance at –V _{CB} = 10V, f = 1 MHz | C _{CBO} | _ | _ | 6 | pF | | Noise Figure at $-V_{CE}$ = 5 V, $-I_{C}$ = 200 μ A, R_{G} = 2 $k\Omega$, f = 1 kHz, Δ f = 200 Hz BC556, BC557, BC558 BC559 | F
F | | 2 | 10
4 | dB
dB | | Noise Figure at $-V_{CE}$ = 5 V, $-I_{C}$ = 200 μ A, R_{G} = 2 $k\Omega$, f = 3015000 Hz | F | _ | 1.2 | 4 | dB | ### **RATINGS AND CHARACTERISTIC CURVES BC556 THRU BC559** ### Admissible power dissipation versus temperature Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case #### **RATINGS AND CHARACTERISTIC CURVES BC556 THRU BC559** ### DC current gain versus collector current # Collector current versus base-emitter voltage ## Collector-base cutoff current versus junction temperature ### Collector saturation voltage versus collector current #### **RATINGS AND CHARACTERISTIC CURVES BC556 THRU BC559** Collector-base capacitance, Emitter-base capacitance versus reverse bias voltage Gain-bandwidth product versus collector current Relative h-parameters versus collector current Noise figure versus collector current #### **RATINGS AND CHARACTERISTIC CURVES BC556 THRU BC559** # Noise figure versus collector current # Noise figure versus collector-emitter voltage