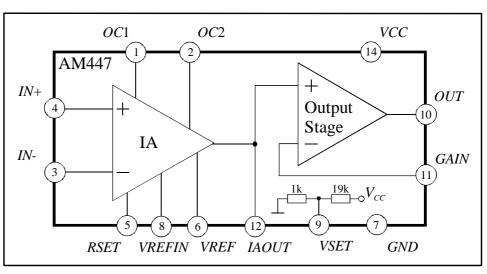
FEATURES

- Very Low Offset Voltage: < 25μV
- Low Input Bias Current: ≤ 5nA
- High Input Sensitivity
- High CMRR: > 90dB min
- Wide Operating Temperature Range: -40°C...+140°C
- Adjustable Rail-to-Rail Voltage Output Stage: 0.5...4.5V
- Single Supply Device (ratiometric)
- Integrated Source and Sink Capability: ±2mA
- Low Noise Behaviour

APPLICATIONS


- Small Signal (Bridge) Amplifier Low Pressure Sensors Automotive Applications DMS Interface Interface for Ceramic Sensors
- High Precision Amplifier **Medical Instrumentation Data Acquisition**

GENERAL DESCRIPTION

The AM447 is a high precision amplifier, designed for amplification of sensor bridge signals up to 35mV full scale. The single supply circuit consists of a high precision instrumentation amplifier (IA) and an integrated ratiometric output stage. Input offset voltages less than $\pm 25\mu V$ ($\pm 1\mu V/^{\circ}C$) are adjustable by only two externally trimmable resistors. The monitoring of the amplified signal is possible at the output of the IA and makes the adjustment easier. With the externally adjustable gain of the output stage, the AM447 can be used for different signal sources. The 2mA sink and source capability makes it ideal for high precision applications specially in the field of automotive sensors.

DELIVERY

- DIL16 packages (samples, small quantities)
- SO16(n) packages
- Dice on 5" blue foil

BLOCK DIAGRAM

analog microelectronics

Analog Microelectronics GmbH An der Fahrt 13, D - 55124 Mainz Internet: www.analogmicro.de

Phone: Fax:

+49 (0)6131/91 073 - 0 +49 (0)6131/91 073 - 30 E-Mail: info@analogmicro.de

April 2000 1/6 Rev. 2.1

Figure 1

ELECTRICAL SPECIFICATIONS

 $V_{CC} = 5$ V, $T_{amb} = 25^{\circ}$ C (unless otherwise noted)

Parameter	Symbol	Conditions	RM	Min.	Typ.	Max.	Unit
Supply Voltage Range	V _{CC}		yes	4.75	5	5.25	v
Maximum Supply Voltage	V _{CCmax}					7	v
Quiescent Current	I _{CC}	$V_{IN} = 0$		2.2	3.3	4.6	mA
Temperature Specifications	Ш						I
Life Time	LT			2500/10			h/a
Operating	T_{amb}	$T_{85\%} = 100^{\circ}\text{C} \text{ for } 85\% \text{ of } LT$ $T_{15\%} = 120^{\circ}\text{C} \text{ for } 15\% \text{ of } LT$ $T_{max} = 140^{\circ}\text{C} \text{ for } t \le 50\text{h}$		-40		140	°C
Storage	T_{st}			-55		125	°C
Junction	T_J					150	°C
Thermal Resistance	Θ_{ja}	DIL16 plastic package			70		°C/W
	Θ_{ja}	SO16 narrow plastic package			140		°C/W
Instrumentation Amplifier							
Internal Gain	G_{INT}			100	102	104	
Gain Drift ⁽¹⁾	$\mathrm{d}GI_{INT}/\mathrm{d}T$				30		ppm/°C
Differential Input Voltage	V_{IN}	$V_{IN} = V_{IN+} - V_{IN-}$		7		35	mV
Common Mode Input Range	CMIR			2.1	2.5	2.9	v
Common Mode Rejection Ratio	CMRR	DC, $R_G = 0$, $V_{IN} = 5$ mV		90	≥ 105		dB
Power Supply Rejection Ratio	PSRR	DC, $R_G = 0$, $V_{IN} = 5$ mV		96	≥ 105		dB
Input Offset Voltage	V _{OS}	$R_G = 0$, compensated			± 25		μV
	Vos	$R_G = 0$, uncompensated			± 500		μV
V_{OS} vs. Temperature ⁽¹⁾	$\mathrm{d}V_{OS}/\mathrm{d}T$	$R_G = 0$, compensated			± 1		$\mu V/^{\circ}C$
	$\mathrm{d}V_{OS}/\mathrm{d}T$	$R_G = 0$, uncompensated			± 5		$\mu V/^{\circ}C$
Input Offset Current	I _{OS}		yes		± 1	± 5	nA
Ios vs. Temperature	dIos /dT		yes		± 5	± 20	pA/°C
Input Bias Current	I_B		yes		±15	± 25	nA
I_B vs. Temperature	$\mathrm{d}I_B/\mathrm{d}T$		yes		± 50		pA/°C
Input-Referred Voltage Noise	e_n	10Hz			25	60	nV/\sqrt{Hz}
		0.1 10Hz			1		μV_{PP}
Input-Referred Current Noise		10Hz			1.6		pA/√Hz
-		0.1 10Hz			70		pA _{PP}
Output Voltage Range	VIAOUT			0.15		$V_{CC} - 1.25$	v
Output Current	IIAOUT	Sourcing, $V_{IAOUT} = \max$.		50			μΑ
		Sinking, $V_{IAOUT} = \min$		20			μA
Capacitive Load Stability	CIAOUT				100		pF
Nonlinearity		End-point Method			20	40	ppm FS
Reference Voltage	<u> </u>	-					
Adjustable Voltage Range	V _{REF}		yes	0.15	0.25	1.00	v
Output Current	I _{REF}	Sourcing		80			μΑ
		Sinking		80			μΑ

Note: (1) No statistic measurements

RM: Ratiometrical

 R_G : Generator Source Resistance

FS: Full Scale

Parameter	Symbol	Conditions	RM	Min.	Тур.	Max.	Unit
Output Stage							
Adjustable Gain	G_{ADJ}			1.2	1.65	4	
Gain Drift	$\mathrm{d}G_{ADJ}/\mathrm{d}T$					5	ppm/°C
Common Mode Input Range	CMIR			0.05		$V_{CC} - 1$	v
Common Mode Rejection Ratio	CMRR	DC		80	90		dB
Power Supply Rejection Ratio	PSRR			70	80		dB
Input Offset Voltage	Vos	$R_G = 0$			± 0.6	± 2.8	mV
V_{OS} vs. Temperature	$\mathrm{d}V_{OS}/\mathrm{d}T$	$R_G = 0$			± 15	± 25	$\mu V/^{\circ}C$
Input Bias Current	I_B		yes	-5	-10	-30	nA
I_B vs. Temperature	$\mathrm{d}I_B/\mathrm{d}T$		yes	5	10	25	pA/°C
Output Voltage Range	V _{OUT,min}	Sinking, $I_{OUT} = 2mA$			100	200	mV
	V _{OUT,max}	Sourcing, $I_{OUT} = 2\text{mA}$		$V_{CC} - 0.2$			v
Output Resistance	R _{OUT}					1	Ω
Capacitive Load Stability	C_{LOAD}			0		47	nF
Slew Rate	SR	$C_{LOAD} = 5 \mathrm{nF}$	yes	0.027			V/µs
Sink Capability	I _{Sink}	$V_{OUT} = 2.5 \text{V}, \ G_{ADJ} = 1$				2	mA
Source Capability	ISource	$V_{OUT} = 2.5 \text{V}, G_{ADJ} = 1$				2	mA

ESD: This integrated circuit can be damaged by ESD. Analog Microelectronics recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

BOUNDARY CONDITIONS

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Offset Compensation Resistor (IA) 1 ¹⁾	R _{OC1}		27		33	kΩ
Offset Compensation Resistor (IA) 2 ¹⁾	R _{OC2}		27		33	kΩ
Gain Resistor 1	R_{G1}		67.3		68.7	kΩ
Gain Resistor 2	R_{G2}		14		210	kΩ
Offset Compensation Resistor (Bridge) 1	R_{O1}			19		kΩ
Offset Compensation Resistor (Bridge) 2	R _{O2}			1		kΩ
Set Resistor ²⁾	R _{SET}		75.0	76.8	78.7	kΩ
Sensor Bridge Resistor ³⁾	<i>R</i> _{BRIDGE}		7		13	kΩ
Differential Input Voltage	V _{IN}	$V_{CC} = 5V$	7		35	mV

Notes: ¹⁾ The offset adjustment is described in the *Functional Description*. An offset compensation over temperature can only be achieved by choosing the resistors R_{OC1} and R_{OC2} with the same temperature coefficient and a very close placement of them in the circuit.

²⁾ A good matching of the resistor R_{SET} with the bridge resistors is forced.

³⁾ The symmetry of the two resistor half bridges has to be better than 2%.

FUNCTIONAL DIAGRAM

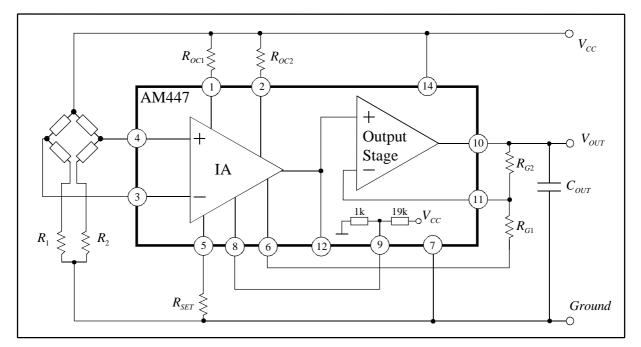


Figure 2: Application for non-compensated and non-calibrated transducers

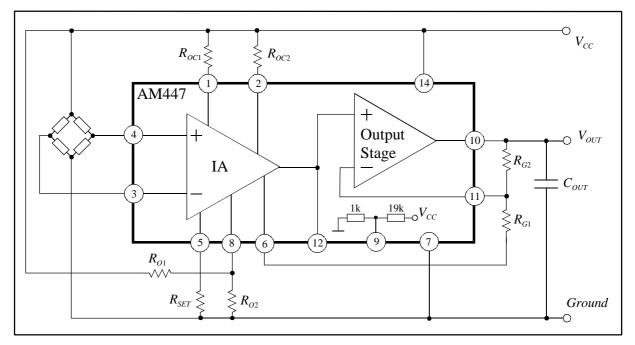


Figure 3: Application for compensated and calibrated transducers

FUNCTIONAL DESCRIPTION

The IC AM447 is an integrated high precision amplifier for low bridge output signals. Basically the AM447 is composed of 2 functional sections as shown in Figure 1:

1. A high accuracy *instrumentation amplifier (IA)* allows amplification with a high signal-to-noise ratio. The two offset compensation resistors R_{OC1} and R_{OC2} offer the possibility to make the input offset voltage of the instrumentation amplifier to nearly zero. But offset compensation over temperature is only given if the resistors R_{OC1} and R_{OC2} have the same temperature coefficients. Furthermore, these resistors have to be placed together very close. It is also necessary to use similar metals for the connection of the sensor bridge and the AM447 to avoid thermocouple effects. The internal gain of the IA is fixed to the value $G_{INT} = 102$. The output voltage V_{IAOUT} (pin 10) of the IA is given by the following equation:

$$V_{IAOUT} = G_{INT} \cdot \left(V_{IN+} - V_{IN-} \right) + V_{VREF}$$

2. An *output stage* de–couples the IA and thus improves the performance of the AM447. The gain factor *G* is fixed by the two external resistors R_{G1} and R_{G2} . The gain factor of the output stage is defined by

$$G_{ADJ} = 1 + \frac{R_{G2}}{R_{G1}}$$

The output signal V_{OUT} (pin 10) can be calculated with

$$V_{OUT} = G\left(V_{IN+} - V_{IN-}\right) + V_{VREF} = \underbrace{G_{INT} \cdot G_{ADJ}\left(V_{IN+} - V_{IN-}\right)}_{\text{Span adjustment}} + \underbrace{V_{VREF}}_{\substack{VREF \\ \text{calibrated transducer}}}$$

The AM447 is suited for two types of transducers. The IC is designed for usage with noncompensated and non-calibrated sensors using resistors R_1 and R_2 for offset calibration as well as for sensor systems with calibrated transducers. The remaining offset of the transducers can be calibrated by variation of V_{VREF} . The adjustment of the offset is then:

$$V_{VREF} = \frac{R_{O2}}{R_{O1} + R_{O2}} V_{CC}$$

The entire sensor systems realised with the different types of AM447 and only a few external components are shown in Figures 2 and 3.

Offset calibration of the instrumentation amplifier

The offset compensation has to be handled with care because the entire system performance depends on it. Please note, that this offset adjustment doesn't include the bridge offset.

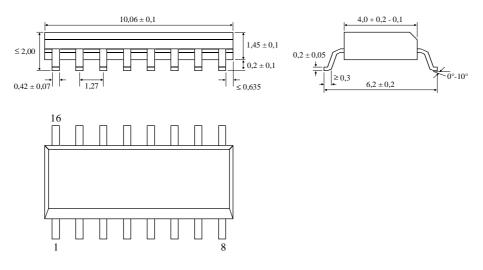
The offset compensation has to be done in the following order:

- $T = 25^{\circ}$ C and $V_{cc} = 5$ V
- $V_{IN+} = V_{IN-} = V_{REF} = 2.5 V$
- The voltage between V_{IAOUT} (pin 12) and V_{REF} (pin 6) has to be adjusted to zero Volt.
- V_{IAOUT} is increased by increasing R_{OC1} and is decreased by increasing R_{OC2} .

PINOUT

OC1 OC2 IN-	16 ☐ <i>I.C.</i> 15 ☐ <i>I.C.</i> 14 ☐ <i>VCC</i>
IN+ RSET	$13 \square N.C.$ $12 \square IAOUT$
VREF GND	$11 \square GAIN$ $10 \square OUT$
VREFII	9 VSET

Figure 4


PIN	NAME	DESIGNATION
1	<i>OC</i> 1	Offset Compensation Resistor 1
2	OC2	Offset Compensation Resistor 2
3	IN–	Inverting Input (IA)
4	IN+	Non-inverting Input (IA)
5	RSET	Set Resistor
6	VREF	Reference Voltage
7	GND	Ground
8	VREFIN	Reference Voltage Input
9	VSET	Choice of Application
10	OUT	Output
11	GAIN	Gain Adjustment
12	IAOUT	Output (IA)
13	N.C.	Not Connected
14	VCC	Supply Voltage
15	<i>I.C.</i>	Internally Connected
16	<i>I.C.</i>	Internally Connected

DELIVERY

The AM447 is available in version:

- 16 pin DIL packages (samples)
- SO 16 (n) packages
- Dice on 5" blue foil

PINOUT

Figure 5

The information provided herein is believed to be reliable; however, Analog Microelectronics assumes no responsibility for inaccuracies or omissions. Analog Microelectronics assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licences to any of the circuits described herein are implied or granted to any third party. Analog Microelectronics does not authorise or warrant any Analog Microelectronics product use in life support devices and/or systems.