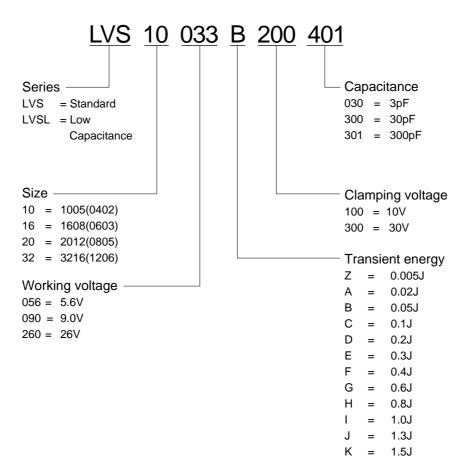


DESCRIPTION

The LVS series is metal oxide based chip varistor for transient voltage suppression. They have non-linear voltage-current behavior, similar to zener diode. Multilayer structured varistor, however, shows superiority in electrical reliability than zener diode, since each grain exhibits small p-n junction. In addition, LVS series shows better electrical properties such as high clamping voltage and low leakage current.


FEATURES

- *Chip varistor provides high reliability on surface mounting
- *Wide range of working voltage ($V_w = 5.6V^{-30V}$)
- *Good clamping ratio and low leakage current
- *Electroplating of Ni and solder gives higher solderability
- *Wide operating temperature (-55~125°C $\,)$
- *Various capacitance is available

APPLICATIONS

- *Protection from transient voltage noise in all kinds of IC
- *Protection from ESD, EFT and surge in power I/O port
- *Replacement of zener diode

ORDERING INFORMATION

SPECIFICATIONS

Part No.	Working Voltage (<25µA)	Breakdown Voltage (@ 1mA)	Clamping Voltage (8/20µS)	Peak Current (8/20µS)	Transient Energy (10/1000µS)	Capacitance (@ 1 kHz)
Symbol	Vw (V)	V _B (V)	Vc (V)	I _P (A)	E⊤ (J)	C (pF)

1005(0402) size

Part No.	Vw (V)	V _B (V)	Vc (V)	I⊧ (A)	E⊤ (J)	C (pF)
LVS10056B160	5.6	7.2~9.6	16	20	0.05	370
LVS10090B200	9	10.8~14.3	20	20	0.05	200
LVS10140B300	14	16.8~22.2	30	20	0.05	100
LVS10180B400	18	21.5~28.5	40	20	0.05	50
LVS10260B580	26	30.9~40.9	58	20	0.05	30

1608(0603) size

Part No.	Vw (V)	V _B (V)	Vc (V)	I _P (A)	Е⊤ (J)	C (pF)
LVS16056C160	5.6	7.2~9.6	16	30	0.1	1000
LVS16090C200	9	10.8~14.3	20	30	0.1	650
LVS16140C300	14	16.8~22.2	30	30	0.1	350
LVS16180C400	18	21.5~28.5	40	30	0.1	230
LVS16260C580	26	30.9~40.9	58	30	0.1	180
LVS16300C650	30	35.7~47.3	65	30	0.1	100

2012(0805) size

Part No.	Vw (V)	Vв (V)	Vc (V)	I⊵ (A)	E⊤ (J)	C (pF)
LVS20056C160	5.6	7.2~9.6	16	40	0.1	3000
LVS20090C200	9	10.8~14.3	20	40	0.1	1300
LVS20140C300	14	16.8~22.2	30	35	0.1	800
LVS20180C400	18	21.5~28.5	40	35	0.1	450
LVS20260C580	26	30.9~40.9	58	35	0.1	300
LVS20300C650	30	35.7~47.3	65	35	0.1	200

3216(1206) size

Part No.	Vw (V)	V _B (V)	Vc (V)	I⊵ (A)	Е⊤ (J)	C (pF)
LVS32056C160	5.6	7.2~9.6	16	40	0.1	1800
LVS32090C200	9	10.8~14.3	20	40	0.1	1300
LVS32140C300	14	16.8~22.2	30	35	0.1	800
LVS32180C400	18	21.5~28.5	40	35	0.1	450
LVS32260C580	26	30.9~40.9	58	35	0.1	300
LVS32300C650	30	35.7~47.3	65	35	0.1	200
* LVS32180F400	18	21.5~28.5	40	150	0.4	1500

* For Automotive Application : Withstand 24.5V DC for 5minutes

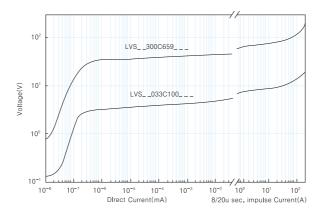
Low Capacitance Series

Part No.	Working Voltage	Breakdown Voltage	Clamping Voltage	Peak Current	Transient Energy	Capacitance
LVS10090C200	9	10.8~14.3	20	40	0.1	1300
LVS10140C300	14	16.8~22.2	30	35	0.1	800
LVS10180C400	18	21.5~28.5	40	35	0.1	450
LVS10260C580	26	30.9~40.9	58	35	0.1	300
LVS10300C650	30	35.7~47.3	65	35	0.1	200
Maximum DC voltage, that is applied centinuously in the maximum exercting temperature of the device * 1MHz					* 1MHz	

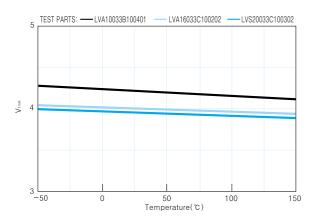
Vw = Maximum DC voltage, that is applied continuously in the maximum operating temperature of the device.

 V_{B} = Varistor voltage or normal voltage, that is measured at the applied current of 1mA.

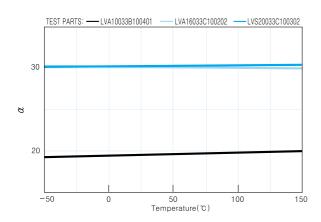
 V_c = Peak voltage appearing across the varistor when measured at the condition of specified pulsed current and waveform. (8/20µS, 0.1J 2A, 0.05J 1A)

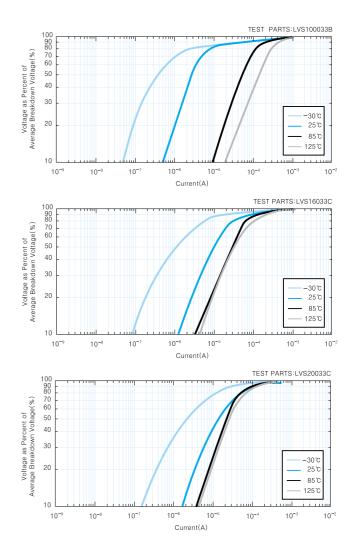

 I_P = Surge current or peak current, the maximum current without causing device failure measured with specified waveform.($8/20\mu$ S) E_T = Maximum rated transient energy that is dissipated for a single current pulse at a specified impulse duration.($10/1000\mu$ S)

RELIABILITY TEST METHOD

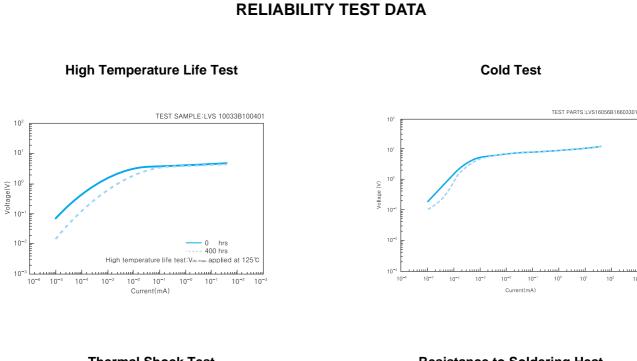

ltem	Test Method	Criteria for judging
Resistance to Soldering	Soldering temperature : 260± 5°C	Visual : No mechanical damage
Heat	Duration of immersion : 10 ± 1 sec.	$\Delta V_{\rm B}/V_{\rm E}$ <10%
	Preheating : 150°C , 1min.	
Solderability Test	Soldering temperature : 230 ± 5°C	At least 75% of the electrode must
	Duration of immersion : 5± 1sec.	be covered with new solder.
	Preheating : 150°C, 1min.	
Adhesion	The Force W is applied to DUT.	Visual : No mechanical damage
	Ĩ ⇔w	0805 : over 2.0Kgf
		0603 : over 1.0Kgf
		0402 : over 0.7Kgf
Resistance to	The middle part of substrate shall,	Visual : No mechanical damage
Flexure of Substrate	successively, be pressurized by means of the	
	pressurizing rod at a rate of about 1mm/sec.	
	Maintenance time : 5 sec.	
	Bending distane : 1mm	
Dry Heat Test	Test temperature : 125 ± 2°C	Visual : No mechanical damage
	Test duration : 1000+48hrs.	Δ V _B /V _B <10%
	After completion of the test, leaving the	
	sample under the standard conditions for 24; 2hrs.	
Cold Test	Test temperature : -30± 2°C	Visual : No mechanical damage
	Test duration : 1000+48hrs.	$\Delta V_{\rm B}/V_{\rm B}$ <10%
	After completion of the test, leaving the	
	sample under the standard conditions for 24+ 2hrs.	
Damp Heat Test	Test temperature : 40± 2°C	Visual : No mechanical damage
(Steady State)	Test relative humidity : 90~95RH%	$\Delta V_{\rm B}/V_{\rm B}$ <10%
	Test duration : 56days+24hrs.	
	After completion of the test, leaving the sample under	
	the standard conditions for 24± 2hrs.(IEC60068-2-3)	
Thermal Shock	+90°C	Visual : No mechanical damage
Test	15min	$\Delta V_{\rm B} / V_{\rm B} < 10\%$
	Ordinary temp.	
	-30°C	
	This cycle is repeated 50 times. After completion of the	
	test, leave the sample under standard condition for $24\pm$	
	2hrs.	
ESD Test	Test Voltage : 8 kV	Visual : No mechanical damage
(Contact discharge)	Type of discharge : direct contact discharge	Δ V _B /V _B <15%
	Number of test pulses : 20 times	
	Polarity : +/-	
	(IEC 61000-4-2)	
ESD Test	Test Voltage : 15 kV	Visual : No mechanical damage
(Air Discharge)	Type of discharge : air discharge	$\Delta V_{\rm B}/V_{\rm B}$ <15%
	Number of test pulses : 20 times	
	Polarity : +/-	
	(IEC 61000-4-2)	
High Temperature	Temp. : 125± 2°C	Visual : No mechanical damage
Life Test	Duration : 1000 i 48hrs.	$\Delta V_{\rm B}/V_{\rm B}$ <10%
	Applied voltage : V dc max	
	After completion of the test, leave the sample under	
	standard condition for 24± 2hrs.	

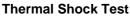
CHARACTERISTIC CURVES

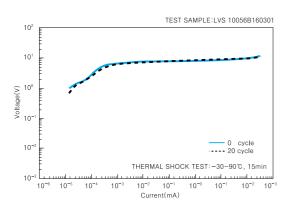

I-V Characteristics


Temperature vs. V_B

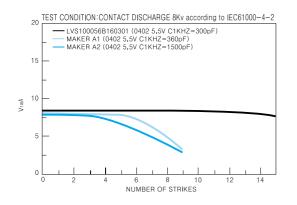
Temperature vs. a

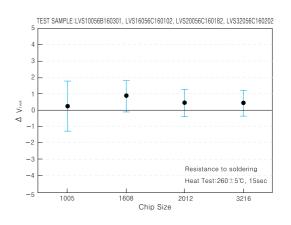


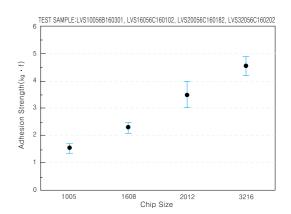

Typical Temperature Dependence of V_B



10²

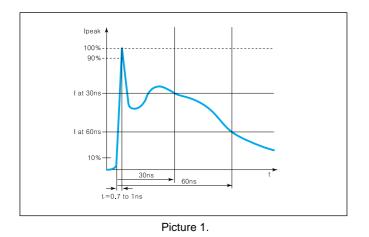

10




ESD Test

Resistance to Soldering Heat

Adhesion



Chip Varistor

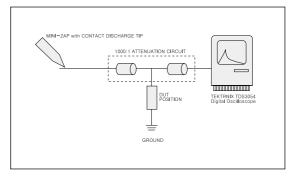
APPLICATION FOR ESD

What is ESD ?

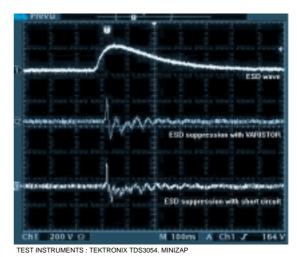
It is a kind of transient voltage noise. The definition of transient voltage is listed in IEC 61000-4 series, which describes the immunity requirements and test methods for electrical and electric equipments, subjected to ESD, EFT, and surge. Figure 1 is the waveform of ESD, defined in IEC 61000-4-2.

Varistor vs. TVS Diode

ESD current has the rise time of sub-nanosecond, duration of tens of nanosecond, and its amplitude reaches over 10KV. So, the protecting device from ESD also needs fast response time. TVS diode has a similar performance with that of LATTRON's varistor, in terms of response time and handling capacity. Which, however, shows inferiority in surge current, leakage current, operating directionality, polarity, and miniaturization as shown in the table.


	LATTRON [®] VARISTOR	TVS DIODE	
Response time	< 1ns	> 1ns	
ESD handling	> Contact 8kV, 10 cycle		
capability			
		High in case of	
Leakage current	Low in all spec.	low voltage spec.	
Surge current	High in all spec.	Low especially in	
handling capability	r ligh in all spec.	high voltage spec.	
Operating temp.	Characteristics are	Characteristics are	
Operating temp.	deteriorated over 80°C	deteriorated from 25°C	
Size	Min. 0603 mm	Min. 1608 mm	

Protection Performance of Lattron is Varistor for ESD


The performance of Lattron is varistor against ESD noise is tested with the test circuit as shown in Picture 2.

Test procedure includes three different circuit configurations; without varistor, with varistor at DUT position, and shorted circuit at DUT position. The test results that had collected with digital scope are shown in Picture 3.

The performance of ESD suppression with Lattron is varistor is as good as that of short circuit.

Picture 2.

Picture 3.