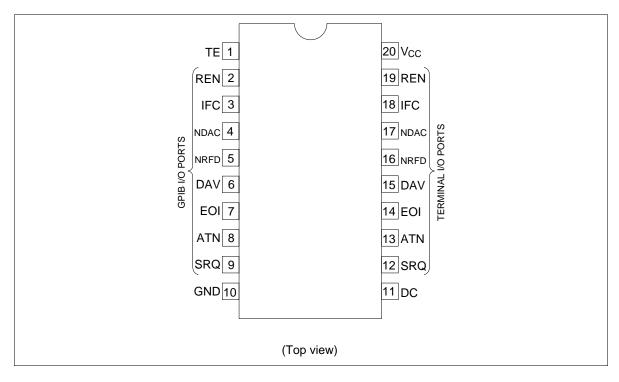
Octal General Purpose Interface Bus Transceivers

HITACHI


ADE-205-591 (Z) 1st. Edition Dec. 2000

Description

The HD75161A is an 8 channel general purpose interface bus transceiver designed to meet the requirements of IEEE standard 488-1978. The transceiver is to provide the bus management and data transfer signals during operating in a controller instrumentation system. When combined with the HD75160A octal bus transceiver, the HD75161A provides the complete 16 wire interface for the IEEE 488 bus. The HD75161A features eight driver receiver pairs connected in a front to back configureation to form input/output ports at both the bus and terminal sides. The direction of data through these driver receiver pairs is determined by the DC and TE enable signals. The device exhibits a high impedance to the bus when $V_{CC} = 0$ V since the bus terminating resistors are built in. If features driver outputs which can handle loads up to 48 mA of sink current. Each receiver features p n p transistor inputs for high input impedance and guaranteed hysteresis of 400 mV for increased noise immunity.

Pin Arrangement

Table Of Abbreviation

DRIVERS

Name	Identity	Class		
DC	Direction Control	Control		
TE	Talk Enable			
ATN	Attention	Bus Management		
SRQ	Service Request			
REN	Remote Enable			
IFC	Interface Clear			
EOI	End Or Identify			
DAV	Data Valid			
NDAC	Not Data Accepted Data Transfer			
NRFD	Not Ready For Data			

Function Table

			Bus ma	inagemei	nt Channe		Data tr	ansfer Cha	annels	
Controls			ATN*1	SRQ	REN	IFC		DAV	NDAC	NRFD
DC	TE	ATN	Control	lled By D	С		EOI	Contro	lled by TE	
Н	Н	Н	R	Т	R	R	Т	Т	R	R
Н	Н	L					R			
L	L	Н	Т	R	Т	Т	R	R	Т	Т
L	L	L					Т			
Н	L	Х	R	Т	R	R	R	R	Т	Т
L	Н	Х	Т	R	Т	Т	Т	Т	R	R
	المام الم	امر								

H : High level

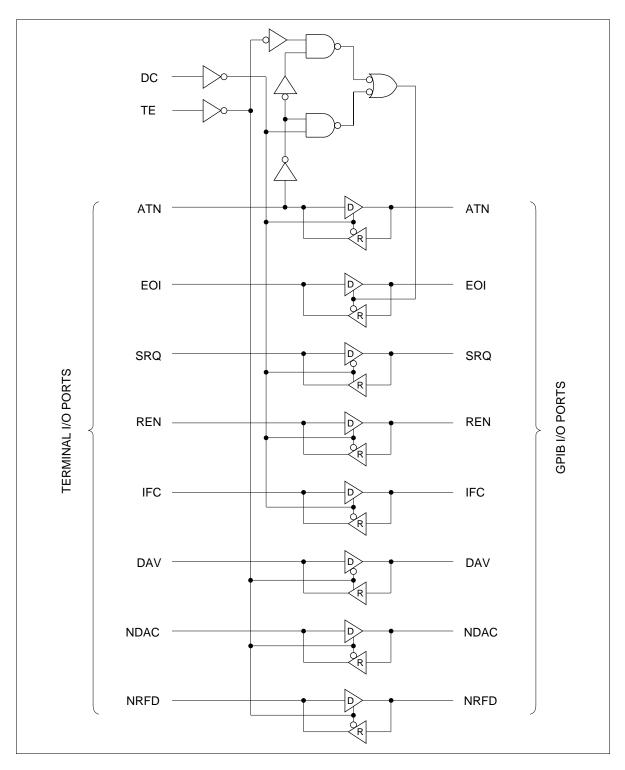
L : Low level X : Irrelevant

R : Receiver

T : Transmit

- Notes: 1. ATN is a normal transceiver channel that functions additionally as an internal direction control or talk enable for EOI whenever the DC and TE inputs are in the same state.
 - Direction of data transmittion is from the terminal side to the bus side and the direction of data receiving is from the bus side to the terminal side. Data transfer is noninverting in both directions.

Absolute Maximum Ratings


Item	Symbol	Rating	Unit
Supply Voltage	V _{cc}	7	V
Input Voltage	V _{IC}	5.5	V
Output Current	I _{OL}	100	mA
Power Dissipation (Ta = 25°C)	P _T	1150	mW
Operating Temperature Range	Topr	0 to 70	°C
Storage Temperature Range	Tstg	-65 to +150	°C

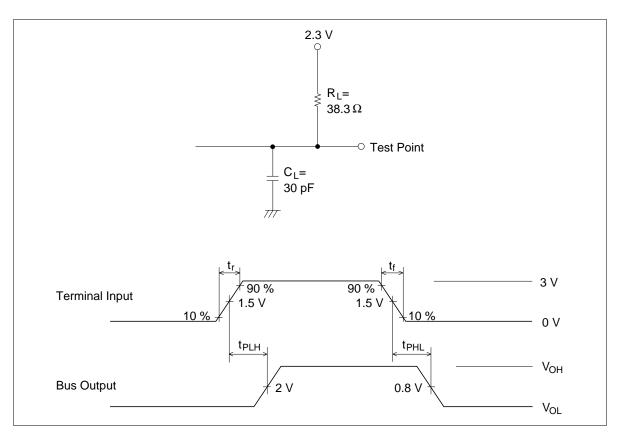
Note: 1. The absolute maximum ratings are values which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

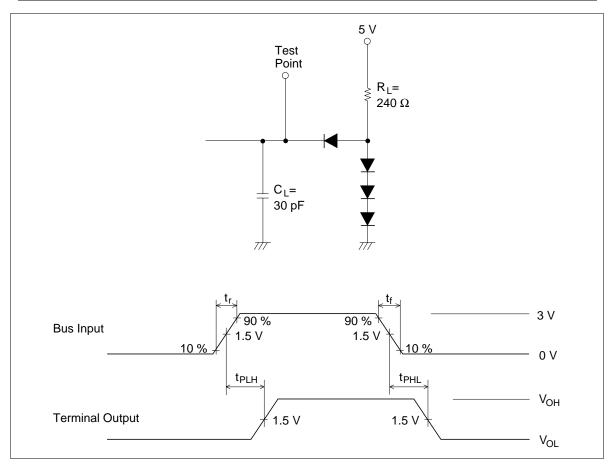
Recommended Operating Conditions

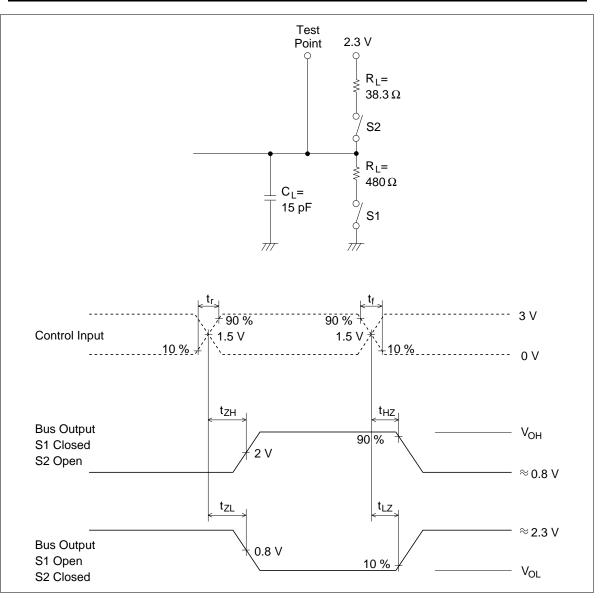
ltem		Symbol	Min	Тур	Мах	Unit
Supply Voltage		V _{cc}	4.75	5.00	5.25	V
Output Current	Bus Ports With 3 State Outputs	I _{OH}		—	-5.2	mA
	Terminal Ports		_	—	-800	μA
Output Current	Bus Ports With 3 State Outputs	I _{ol}		—	48	mA
	Terminal Ports		_	_	16	
Operating Tem	Topr	0	—	70	°C	

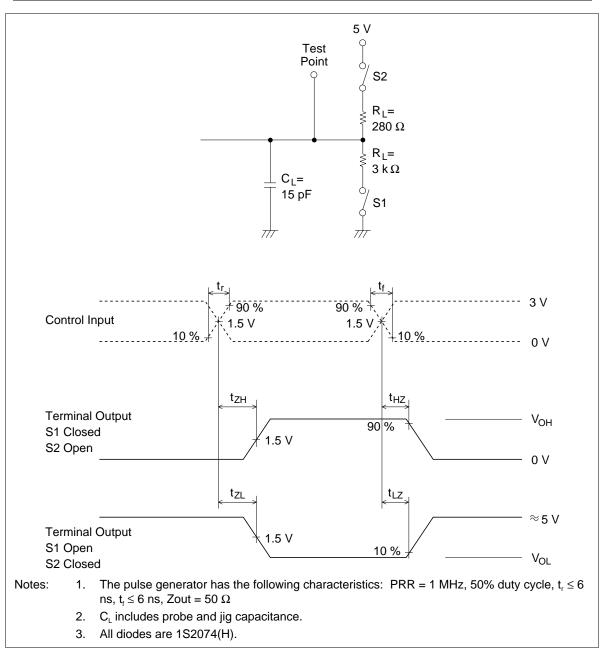
Logic Diagram

ltem		Symbol	\mathbf{V}_{cc}	Min	Max	Unit	Conditions		
Input Voltage		V _{IH}	2	—	—	V			
		V _{IL}	_	—	0.8	=			
Input Clamp Voltage		V _{IK}	_	_	-1.5	V	$I_1 = -18 \text{ mA}$		
Hysteresis	Bus	$V_{\rm T}^{^+}-V_{\rm T}^{^-}$	0.4	_	_	V			
Output Voltage	Terminal	V _{OH}	2.7	_	_	V	I _{OH} = -800 μA		
	Bus	_	2.5	_	_	=	I _{oH} = -5.2 mA		
	Terminal	V _{OL}	_		0.5	V	I _{oL} = 16 mA		
	Bus	_	_	_	0.5	-	I _{oL} = 48 mA		
Input Current	Terminal	I ₁	_	_	100	μA	V ₁ = 5.5 V		
	Terminal And	I _{IH}	_	_	20	-	V ₁ = 2.7 V		
	Control Inputs	I	_	_	-100	-	V ₁ = 0.5 V		
Voltage at Bus Po	ort	V _{I/O (bus)}	2.5		3.7	V	Driver $I_{I(bus)} = 0$		
			_	_	-1.5	-	Disabled $I_{I(bus)} = -12 \text{ mA}$		
Current Into Bus	V _{cc} ON	I I/O (bus)	-1.3	_	_	mA	Driver $V_{I(bus)} = -1.5 \text{ V to } 0.4 \text{ V}$		
Port			0	_	-3.2	-	Disabled $V_{I(bus)} = 0.4 \text{ V to } 2.5 \text{ V}$		
			_	—	+2.5 -3.2	_	$V_{I(bus)}$ = 2.5 V to 3.7 V		
			0	_	2.5	-	$V_{i(bus)} = 3.7 \text{ V to 5 V}$		
			0.7	_	2.5	-	$V_{I(bus)} = 5 V \text{ to } 5.5 V$		
	V _{cc} OFF	_	_	_	40	μA	$V_{\text{CC}} = 0$, $V_{\text{I(bus)}} = 0$ V to 2.5 V		
Short Circuit	Terminal	I _{os}	-15	_	-75	mA			
Output Current	Bus	_	-25	_	-125	-			
Supply Voltage		I _{cc}	_	_	100	mA	No Load TE, DC, low		
Bus port Capacita	$C_{\rm I/O\ (bus)}$	_	30	_	pF	$\label{eq:V_cc} \begin{array}{l} V_{cc} = 5 \ V \ \text{or} \ 0 \ V, \ V_{_{I\!/\!O}} = 0 \ \text{to} \ 2 \ V, \\ f = 1 \ MHz \end{array}$			

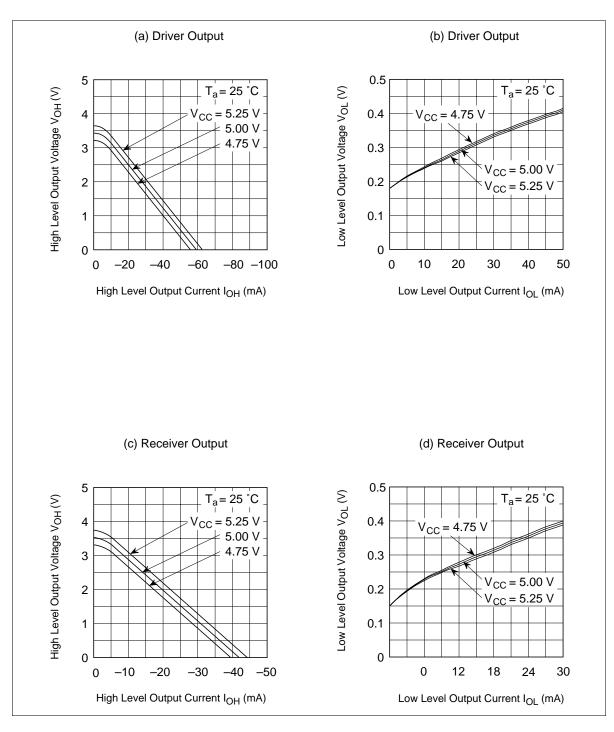

DC Electrical Characteristics (Ta = 0 to 70° C)

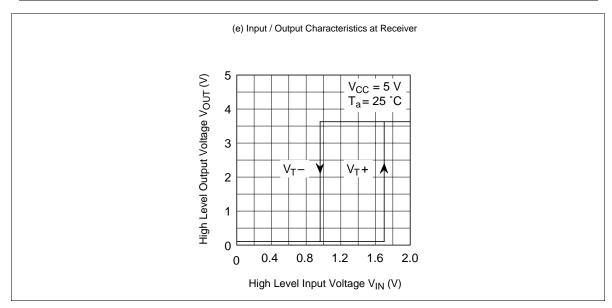

Note: 1. $V_{cc} = 5 V$, Ta = $25^{\circ}C$

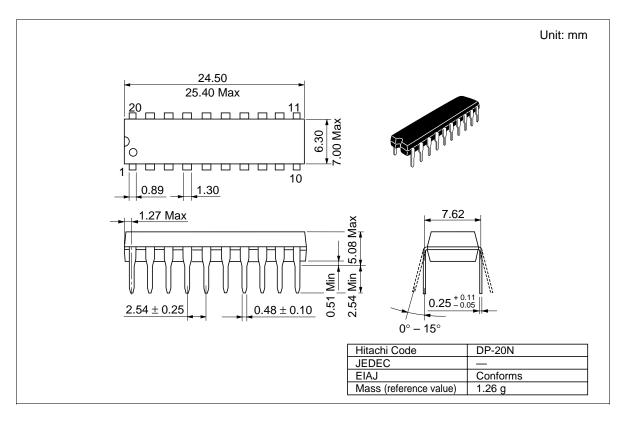

Item	Symbol	Input	Output	Min	Тур	Мах	Unit	Test Circuit	Test Conditions
Propagation Delay	t _{PLH}	Terminal	BUS	_	14	20	ns	1	C _L = 30 pF
Time	t _{PHL}	_		_	14	20	_		$\rm R_{\scriptscriptstyle L}$ = 38.3 Ω to 2.3 V
	t _{PLH}	BUS	Terminal		12	20	_	2	C _L = 30 pF
	t _{PHL}	_		_	16	22	_		$\rm R_{\scriptscriptstyle L}$ = 240 Ω to 5 V
Output Enable Time	t _{zH}	TE DC	BUS			60	_	3	C _L = 15 pF
Output Disable Time	t _{HZ}	_	ATTN, EO1	_	_	45	_		$\rm R_{\scriptscriptstyle L}$ = 480 Ω to 0 V
Output Enable Time	t _{zL}	_	REN, IFC	_	_	60	_		C _∟ = 15 pF
Output Disable Time	t _{LZ}	_	and DAY	_	_	55	_		$\rm R_{\scriptscriptstyle L}$ = 38.3 Ω to 2.3 V
Output Enable Time	t _{zH}	TE DC	Terminal		_	55	_	4	C _L = 15 pF
Output Disable Time	t _{HZ}	_		_	_	50	_		R_{L} = 3 k Ω to 0 V
Output Enable Time	t _{zL}	_		_	_	45	_		C _∟ = 15 pF
Output Disable Time	t _{LZ}	_		_	_	55	_		$\rm R_{\scriptscriptstyle L}$ = 280 Ω to 5 V


Switching Characteristics ($V_{CC} = 5 \text{ V}, \text{ Ta} = 25^{\circ}\text{C}$)

Switching Time Test Method







Characteristics Of Driver And Receiver

Package Dimensions

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HITACHI Hitachi, Ltd.

Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

URL	NorthAmerica Europe	:	http://semiconductor.hitachi.com/ http://www.hitachi-eu.com/hel/ecg
	Asia Japan		http://sicapac.hitachi-asia.com http://www.hitachi.co.jp/Sicd/indx.htm

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose, CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223

Hitachi Europe GmbH Electronic Components Group Dornacher Straβe 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00

Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 585160

Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00, Singapore 049318 Tel : <65>-538-6533/538-8577 Fax : <65>-538-6933/538-3877 URL : http://www.hitachi.com.sg

Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road, Hung-Kuo Building, Taipei (105), Taiwan Tel : <886>-(2)-2718-3666 Fax : <886>-(2)-2718-3860 Telex : 23222 HAS-TP URL : http://www.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon, Hong Kong Tel : <852>-(2)-735-9218 Fax : <852>-(2)-730-0281 URL : http://www.hitachi.com.hk

Copyright © Hitachi, Ltd., 2000. All rights reserved. Printed in Japan. Colophon 2.0