37–39 GHz GaAs MMIC Power Amplifier #### AA038P5-00 #### **Features** - Single Bias Supply Operation (5.5 V) - 18 dB Typical Small Signal Gain - 19 dBm Typical P_{1 dB} Output Power at 39 GHz - 0.25 µm Ti/Pd/Au Gates - 100% On-Wafer RF and DC Testing - 100% Visual Inspection to MIL-STD-883 MT 2010 #### **Description** Alpha's three-stage reactively-matched Ka band GaAs MMIC amplifier has a typical $P_{1\,dB}$ of 19 dBm with 17 dB associated gain over the band 37–39 GHz. The chip uses Alpha's proven 0.25 μm MESFET technology, and is based upon MBE layers and electron beam lithography for the highest uniformity and repeatability. The FETs employ surface passivation to ensure a rugged, reliable part with through-substrate via holes and gold-based backside metallization to facilitate an epoxy die attach process. All chips are screened for small signal S-parameters and power characteristics prior to shipment for guaranteed performance. A broad range of applications exist in both the high reliability and commercial areas where power and gain are required. ### **Chip Outline** Dimensions indicated in mm. All DC (V) pads are $0.1\,x\,0.1\,$ mm and RF In, Out pads are $0.07\,$ mm wide. Chip thickness = $0.1\,$ mm. # **Absolute Maximum Ratings** | Characteristic | Value | | |---|-------------------|--| | Operating Temperature (T _C) | -55°C to +90°C | | | Storage Temperature (T _{ST}) | -65°C to +150°C | | | Bias Voltage (V _D) | 7 V _{DC} | | | Power In (P _{IN}) | 19 dBm | | | Junction Temperature (T _J) | 175°C | | # Electrical Specifications at 25°C ($V_{DS} = 5.5 \text{ V}$) | Parameter | Condition | Symbol | Min. | Тур. | Max. | Unit | |---------------------------------------|---------------|-------------------|------|------|------|------| | Drain Current (at Saturation) | | I _{DS} | | 200 | 370 | mA | | Small Signal Gain | F = 37–39 GHz | G | 16 | 18 | | dB | | Input Return Loss | F = 37–39 GHz | RL _I | | -13 | -10 | dB | | Output Return Loss | F = 37–39 GHz | RLO | | -20 | -10 | dB | | Output Power at 1 dB Gain Compression | F = 39 GHz | P _{1 dB} | 16 | 19 | | dBm | | Saturated Output Power | F = 39 GHz | P _{SAT} | 19 | 21 | | dBm | | Gain at Saturation | F = 39 GHz | G _{SAT} | | 15 | | dB | | Thermal Resistance ¹ | | $\Theta_{\sf JC}$ | | 51 | | °C/W | ^{1.} Calculated value based on measurement of discrete FET. # **Typical Performance Data** **Typical S-Parameters** # 21.0 P_{OUT} at 40 GHz P_{OUT} at 39 GHz P_{OUT} at 37 GHz P_{OUT} at 38 GHz 17.0 P_{OUT} at 38 GHz P_{OUT} at 38 GHz P_{OUT} at 38 GHz P_{OUT} at 38 GHz **Typical Power Sweep** # **Bias Arrangement** For biasing on, adjust $\rm V_{DS}$ from zero to the desired value (5.5 V recommended). For biasing off, reverse the biasing on procedure. #### **Circuit Schematic** Detail A