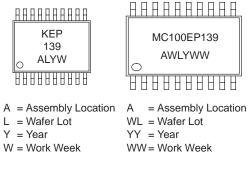
Product Preview +2/4, +4/5/6 Clock Generation Chip

The MC100EP139 is a low skew $\pm 2/4$, $\pm 4/5/6$ clock generation chip designed explicitly for low skew clock generation applications. The internal dividers are synchronous to each other, therefore, the common output edges are all precisely aligned. The device can be driven by either a differential or single–ended ECL or, if positive power supplies are used, LVPECL input signals. In addition, by using the V_{BB} output, a sinusoidal source can be AC coupled into the device. If a single–ended input is to be used, the V_{BB} output should be connected to the CLK input and bypassed to ground via a 0.01µF capacitor.

The common enable (\overline{EN}) is synchronous so that the internal dividers will only be enabled/disabled when the internal clock is already in the LOW state. This avoids any chance of generating a runt clock pulse on the internal clock when the device is enabled/disabled as can happen with an asynchronous control. The internal enable flip–flop is clocked on the falling edge of the input clock, therefore, all associated specification limits are referenced to the negative edge of the clock input.

Upon startup, the internal flip–flops will attain a random state; therefore, for systems which utilize multiple EP139s, the master reset (MR) input must be asserted to ensure synchronization. For systems which only use one EP139, the MR pin need not be exercised as the internal divider design ensures synchronization between the $\pm 2/4$ and the $\pm 4/5/6$ outputs of a single device. All V_{CC} and V_{EE} pins must be externally connected to power supply to guarantee proper operation.

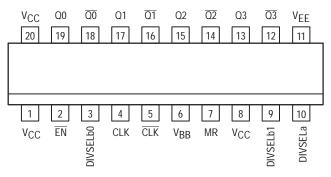
- 50ps Output-to-Output Skew
- PECL mode: 3.0V to 5.5V V_{CC} with $V_{EE} = 0V$
- ECL mode: 0V V_{CC} with $V_{EE} = -3.0V$ to -5.5V
- Synchronous Enable/Disable
- Master Reset for Synchronization of Multiple Chips
- Q Output will default LOW with inputs open or at VEE
- ESD Protection: >2KV HBM, >100V MM
- VBB Output
- New Differential Input Common Mode Range
- Moisture Sensitivity Level 2 For Additional Information, See Application Note AND8003/D
- Flammability Rating: UL–94 code V–0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 758 devices


ON Semiconductor Formerly a Division of Motorola http://onsemi.com

TSSOP-20 DT SUFFIX CASE 948E

SO-20 DW SUFFIX CASE 751D

MARKING DIAGRAM



*For additional information, see Application Note AND8002/D

ORDERING INFORMATION

Device	Package	Shipping
MC100EP139DT	TSSOP	75 Units/Rail
MC100EP139DTR2	TSSOP	2500 Tape/Reel
MC100EP139DW	SOIC	38 Units/Rail
MC100EP139DWR2	SOIC	2500 Tape/Reel

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

Figure 1. 20-Lead SOIC (Top View)

Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

FUNCTION TABLES

CLK	EN	MR	FUNCTION
Z ZZ X	L H X		Divide Hold Q0:3 Reset Q0:3

Z = Low-to-High Transition ZZ = High-to-Low Transition

DIVSELa	Q0:1 OUTPUTS					
0	Divide by 2					
1	Divide by 4					
DIVSELb0	DIVSELb1	Q2:3 OUTPUTS				
0	0	Divide by 4				
1	0	Divide by 6				
0	1	Divide by 5				
1	1	Divide by 5				

PIN DESCRIPTION							
PIN	FUNCTION						
CLK, CLK ECL Diff Clock Inputs							
EN	ECL Sync Enable						
MR	ECL Master Reset						
V _{BB}	ECL Reference Output						
Q0, Q1, <u>Q0</u> , <u>Q1</u>	ECL Diff ÷2/4 Outputs						
Q2, Q3, <u>Q2</u> , <u>Q3</u>	ECL Diff ÷4/5/6 Outputs						
DIVSELa	ECL Freq. Select Input ÷ 2/4						
DIVSELb0	ECL Freq. Select Input ÷ 4/5/6						
DIVSELb1	ECL Freq. Select Input ÷ 4/5/6						
VCC	ECL Positive Supply						
V_{EE}	ECL Negative, 0 Supply						

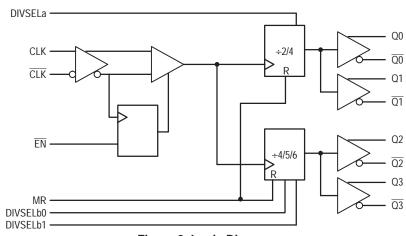
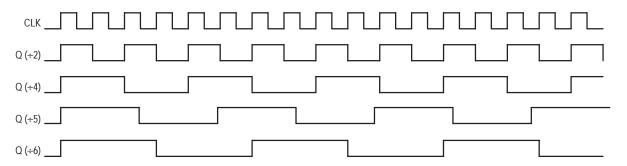
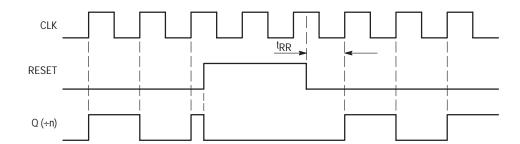




Figure 2. Logic Diagram

MAXIMUM RATINGS*

Symbol	Parameter		Value	Unit
V _{EE}	Power Supply (V _{CC} = 0V)		-6.0 to 0	VDC
VCC	Power Supply (V _{EE} = 0V)		6.0 to 0	VDC
VI	Input Voltage (V _{CC} = 0V, V _I not more negative th	nan V _{EE})	-6.0 to 0	VDC
VI	Input Voltage (VEE = 0V, VI not more positive the	an V _{CC})	6.0 to 0	VDC
lout	Output Current	Continuous Surge	50 100	mA
I _{BB}	V _{BB} Sink/Source Current†		± 0.5	mA
T _A	Operating Temperature Range		-40 to +85	°C
T _{stg}	Storage Temperature		-65 to +150	°C
θ_{JA} (DT Suffix)	Thermal Resistance (Junction-to-Ambient)	Still Air 500lfpm	140 100	°C/W
θ_{JC} (DT Suffix)	Thermal Resistance (Junction-to-Case)		23 to 41 $\pm5\%$	°C/W
θ_{JA} (DW Suffix)	Thermal Resistance (Junction-to-Ambient)	Still Air 500lfpm	90 60	°C/W
θ_{JC} (DW Suffix)	Thermal Resistance (Junction-to-Case)		33 to 35 $\pm5\%$	°C/W
T _{sol}	Solder Temperature (<2 to 3 Seconds: 245°C de	sired)	265	°C

 * Maximum Ratings are those values beyond which damage to the device may occur.

† Use for inputs of same package only.

DC CHARACTERISTICS, ECL/LVECL ($V_{CC} = 0V$, $V_{EE} = -5.5V$ to -3.0V) (Note 3.)

					_			-			-
			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 1.)	70	85	100	70	90	105	75	95	110	mA
VOH	Output HIGH Voltage (Note 2.)	-1250	-1100	-895	-1250	-1100	-895	-1250	-1100	-895	mV
VOL	Output LOW Voltage (Note 2.)	-1995	-1850	-1650	-1995	-1850	-1650	-1995	-1850	-1650	mV
VIH	Input HIGH Voltage Single Ended		-1022			-1022			-1022		mV
VIL	Input LOW Voltage Single Ended		-1642			-1642			-1642		mV
IIН	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current CLK CLK	0.5 -150			0.5 -150			0.5 -150			μA

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

1. $V_{CC} = 0V$, $V_{EE} = V_{EEmin}$ to V_{EEmax} , all other pins floating. 2. All loading with 50 ohms to $V_{CC} - 2.0$ volts. 3. Input and output parameters vary 1:1 with V_{CC} .

DC CHARACTERISTICS, LVPECL ($V_{CC} = 3.3V \pm 0.3V$, $V_{EE} = 0V$) (Note 6.)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 4.)	70	83	100	70	87	105	75	90	110	mA
VOH	Output HIGH Voltage (Note 5.)	2050	2200	2405	2050	2200	2405	2050	2200	2405	mV
VOL	Output LOW Voltage (Note 5.)	1305	1450	1650	1305	1450	1650	1305	1450	1650	mV
VIH	Input HIGH Voltage Single Ended		2277			2277			2277		mV
VIL	Input LOW Voltage Single Ended		1657			1657			1657		mV
IIН	Input HIGH Current			150			150			150	μΑ
Ι _Ι Γ	Input LOW Current CLK CLK	0.5 -150			0.5 -150			0.5 -150			μA

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

4. $V_{CC} = 3.0V$, $V_{EE} = 0V$, all other pins floating.

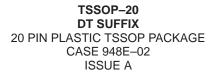
5. All loading with 50 ohms to V_{CC} –2.0 volts.

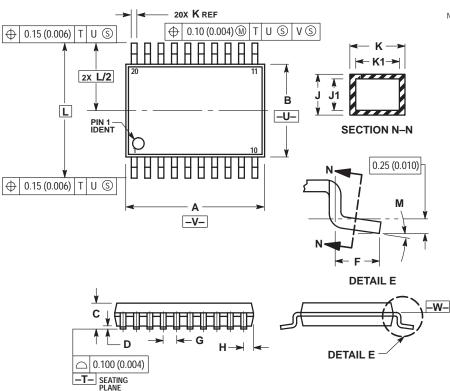
6. Input and output parameters vary 1:1 with V_{CC}.

			–40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Мах	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 7.)	70	85	100	70	90	105	75	95	110	mA
VOH	Output HIGH Voltage (Note 8.)	3750	3900	4105	3750	3900	4105	3750	3900	4105	mV
VOL	Output LOW Voltage (Note 8.)	3005	3150	3350	3005	3150	3350	3005	3150	3350	mV
VIH	Input HIGH Voltage Single Endec	1	3977			3977			3977		mV
VIL	Input LOW Voltage Single Ended		3357			3357			3357		mV
IIН	Input HIGH Current			150			150			150	μΑ
ΙIL	Input LOW Current CLH				0.5 -150			0.5 150			μA

DC CHARACTERISTICS, PECL ($V_{CC} = 5.0V \pm 0.5V$, $V_{FF} = 0V$) (Note 9.)

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

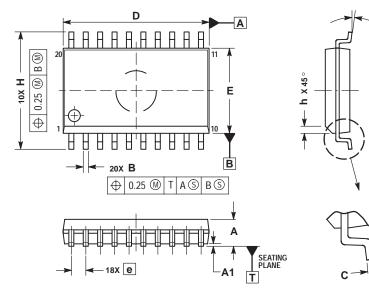

7. $V_{CC} = 5.0V$, $V_{EE} = 0V$, all other pins floating. 8. All loading with 50 ohms to $V_{CC} - 2.0$ volts. 9. Input and output parameters vary 1:1 with V_{CC} .


AC CHARACTERISTICS (V_{CC} = 3.0V to 5.5V; V_{EE} = 0V) or (V_{CC} = 0V; V_{EE} = -3.0V to -5.5V)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
fmax	Maximum Toggle Frequency (Note 10.)	1.0	1.2		1.0	1.2		1.0	1.2		GHz
^t PLH [,] ^t PHL	Propagation Delay CLK, Q(DIFF) CLK, Q(SE) MR, Q	550	700	800	600	750	900	675	825	975	ps
^t SKEW	Device Skew Q, Q Part–to–Part (Note 11.)					50 200					ps
^t JITTER	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
t _r t _f	Output Rise and Fall Times Q, \overline{Q} (20% – 80%)	110	180	250	125	190	275	150	215	300	ps
t _s	Setup Time EN, CLK DIVSEL, CLK	200 400	120		200 400	120		200 400	120		ps
t _h	Hold Time CLK, EN CLK, DIVSEL	100 150	50		100 150	50		100 150	50		ps
V _{pp}	Input Voltage Swing (Diff)	300	800	1200	300	800	1200	300	800	1200	mV
t _{rr}	Reset Recovery Time					100					ps
^t pw	Minimum Pulse Width CLK MR	550	450		550	450		550	450		ps

10. F_{max} guaranteed for functionality only. V_{OL} and V_{OH} levels are guaranteed at DC only. 11. Skew is measured between outputs under identical transitions.

PACKAGE DIMENSIONS


NOTES:

- 1.
- 2. 3.
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS, MOLD FLASH, OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION P DOES NOT INCLUDE
- DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
- INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	6.40	6.60	0.252	0.260
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026	BSC
Н	0.27	0.37	0.011	0.015
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
К	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40	BSC	0.252	BSC
М	0°	8°	0 °	8°

PACKAGE DIMENSIONS

ß

- NOTES:
 DIMENSIONS ARE IN MILLIMETERS.
 INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS							
DIM	MIN	MAX						
Α	2.35	2.65						
A1	0.10	0.25						
В	0.35	0.49						
С	0.23	0.32						
D	12.65	12.95						
E	7.40	7.60						
e	1.27	BSC						
Н	10.05	10.55						
h	0.25	0.75						
L	0.50	0.90						
θ	0 °	7 °						

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

USA/EUROPE Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

Fax Response Line*: 303–675–2167 800–344–3810 Toll Free USA/Canada *To receive a Fax of our publications

N. America Technical Support: 800-282-9855 Toll Free USA/Canada

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5487–8345 Email: r14153@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.

MC100EP139