

RF106 900 MHz Power Amplifier

Product Description

The RF106 is a class AB RF power amplifier for 900 MHz ISM band applications. It delivers output power proportional to the input signal power.

The RF106 power amplifier, combined with Conexant's RF105 diSSTance™ (digital Spread Spectrum Technology) transceiver, forms a complete system solution for a direct conversion 900 MHz diSSTance radio which is fully compliant with FCC Part 15 regulations in the ISM band.

The RF106 is operational in the 900 MHz ISM band with supply voltage ranging from 2.7V to 5V. It is available in a small 20-pin TSSOP package, shown in Figure 1. Figure 2 shows a block diagram for the RF106.

Features

- Class AB-type RF power amplifier
- 100 mW peak envelope output power
- Very fast settling from standby mode to active mode
- Efficient high output power operation
- Very few external components required
- 20-pin TSSOP package

Applications

- diSSTance-technology cordless telephone
- Direct sequence spread spectrum systems
- Frequency hopping spread spectrum systems
- Wireless LANs
- Wireless modems
- Wireless security
- Inventory control systems

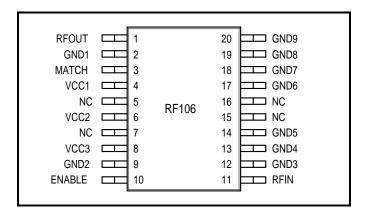


Figure 1. RF106 Pin Signals - 20 Pin TSSOP

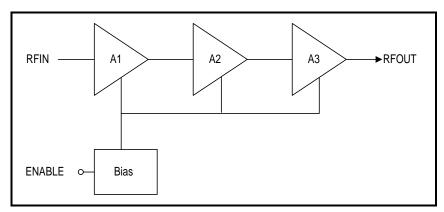


Figure 2. RF106 Block Diagram

Technical Description

The RF106 is a three stage, class AB RF power amplifier for the 902-928 MHz ISM band. A class AB power amplifier allows a wide range of output powers without excessive idle power dissipation. Figure 3 shows a typical application circuit for the RF106.

Recommendations on Layout and Implementation

Matching

An input matching network and an output matching network are needed for maximum power transfer. For greatest efficiency, it is recommended that the input matching network be determined before the output matching network. Matching network values are layout-sensitive. If the RF106 is used with Conexant's RF105 transceiver, the input matching network is not required if the connecting traces are short.

Bypassing

All Vcc pins should have proper bypassing. These decoupling capacitors should be placed very close to the pins, preferably right at the Vcc pins.

A bypassing capacitor of 33pF and a decoupling capacitor of 1nF for low frequency noise are recommended. Due to layout variations the value of the capacitor may vary.

General Grounding Requirements

All ground pins should have minimum trace inductance to ground. If a ground plane cannot be provided right at the pins, the vias to ground plane should be placed as close to the pins as possible. There should be one via for each ground pin, unless otherwise specified. If the ground plane is at the bottom layer, two vias per pin in parallel may be required.

It is important to provide pins 13 and 14 with separate low-impedance connections to GND, isolated from other top-layer grounds.

NC pins are not used and should be connected to ac ground, Vcc or ground, as shown in Figure 3.

ESD Sensitivity

The RF106 is a static-sensitive electronic device. Do not operate or store near strong electrostatic fields. Take proper Electrostatic Discharge (ESD) precautions.

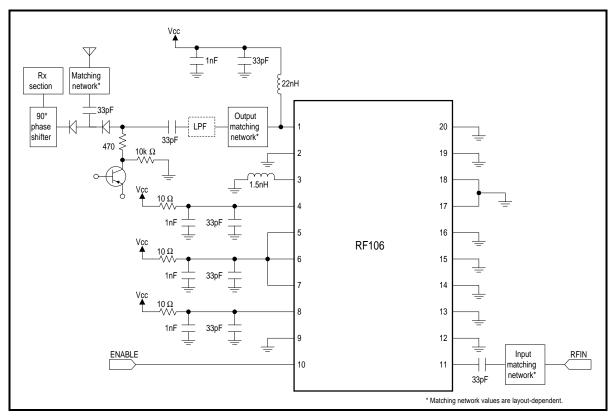


Figure 3. RF106 Typical Application Circuit

Interface Description

Table 1 describes the pin signals for the RF106.

Table 1. Pin Signal Description

Pin No.	Name	Description					
1	RFOUT	Power amplifier output Connect to power supply through an inductor; matching network required before connecting to antenna.					
2	GND1	Ground					
3	MATCH	Interstage matching Connect to ground through a 1.5 nH (typical) inductor.					
4	VCC1	Power supply					
5	NC	Not used Connect to ac ground, Vcc or ground (Figure 3).					
6	VCC2	Power supply Internally connected to middle stage matching network.					
7	NC	Not used Connect to ac ground, Vcc or ground (Figure 3).					
8	VCC3	Power supply					
9	GND2	Ground					
10	ENABLE	Chip enable (active high)					
11	RFIN	Power amplifier input					
12	GND3	Ground					
13	GND4	Ground					
14	GND5	Ground					
15	NC	Not used Connect to ac ground, Vcc or ground (Figure 3).					
16	NC	Not used Connect to ac ground, Vcc or ground (Figure 3).					
17	GND6	Ground					
18	GND7	Ground					
19	GND8	Ground					
20	GND9	Ground					

Specifications

Table 2 lists the absolute maximum ratings for the RF106.

Table 3 gives the electrical specifications for the RF106.

Table 2. Absolute Maximum Ratings

Parameter	Min.	Max.	Unit			
Supply voltage (Vcc) (note 1)		+5	V			
Input voltage range (note 1)	GND	VCC	V			
Power dissipation @ high output power mode		400	mW			
Ambient operating temperature	-10	+70	°C			
Storage temperature	-40	+125	°C			
Notes: 1. Voltages are referenced to GND.						

Table 3. RF106 Electrical Specifications (note 1)

	Parameter	Min.	Тур.	Max.	Units
Gain variation vs. frequer	ncy (902–928 MHz)		±0.15	±0.75	dB
Peak-Envelope output Po	ower (PEP) (note 2)	18	21	22	dBm
RF gain		26	29	30	dB
Total supply current:	Output PEP = 21 dBm Output PEP = 11 dBm Output PEP = 1 dBm Standby (note 5)		95 (note 2) 40 (note 3) 30 (note 4) < 1		mA mA mA μA
IM3: PEP ≤ 21 dBm			-21	-17	dBc
Output VSWR for uncond	litional stability			10:1	
RF input return loss (902-	-928 MHz)			-9.5	dB
RF output-to-input isolation	on @ 915 MHz		50		dB
RF input impedance			50		Ω
RFOUT passband 3dB B	W around 915 MHz	250			MHz
VIH for ENABLE		1.9			V
VIL for ENABLE				0.8	V
IIH for ENABLE			50	60	μА
IIL for ENABLE		-10	-1	0	μА
Power supply for specifie	d performance	3.0	3.6	5.0	V
Power supply range		2.7	3.6	5.0	V
Operating temperature ra	nge	-10	25	70	°C

Notes:

- 1. Test conditions: T_A = 25 °C, VCC = 3.3V, fREF = 915 MHz
- 2. With continuous wave RF input signal of -8 dBm.
- 3. With continuous wave RF input signal of –18 dBm.
- 4. With continuous wave RF input signal of -28 dBm.
- 5. When ENABLE (pin 10) is low.

Device Dimensions

Package dimensions for the RF106 are given in Figure 4.

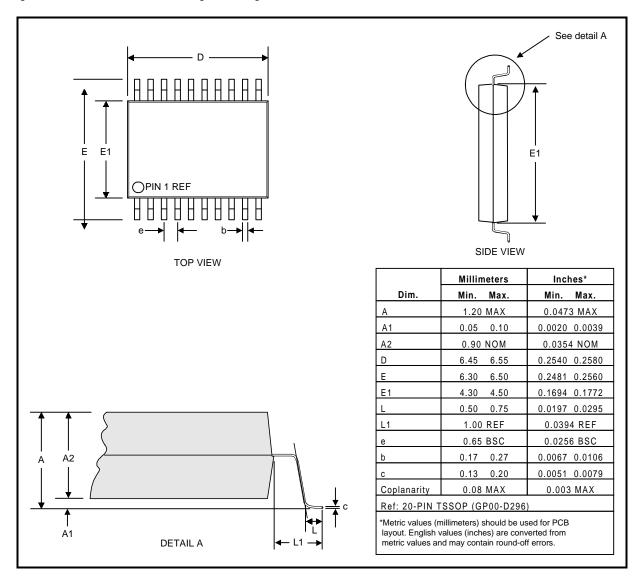


Figure 4. Package Dimensions - 20-pin TSSOP

Information provided by Conexant Systems, Inc. is believed to be accurate and reliable. However, no responsibility is assumed by Conexant for its use, nor any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of Conexant other than for circuitry embodied in Conexant products. Conexant reserves the right to change circuitry at any time without notice. This document is subject to change without notice.

Conexant, "What's Next in Communications Technologies" and diSSTance are trademarks of Conexant Systems, Inc.

Product names or services listed in this publication are for identification purposes only, and may be trademarks or registered trademarks of their respective companies. All other marks mentioned herein are the property of their respective holders.

©1999, Conexant Systems, Inc. Printed in U.S.A. All Rights Reserved

Further Information:

literature@conexant.com 1-800-854-8099 (North America) 33-14-906-3980 (International)

Web Site

www.conexant.com

World Headquarters

Conexant Systems, Inc. 4311 Jamboree Road,

P.O. Box C

Newport Beach, CA 92658-8902

Phone: (949) 483-4600 Fax: (949) 483-6375

U.S. Florida/South America

Phone: (813) 799-8406 Fax: (813) 799-8306

U.S. Los Angeles

Phone: (805) 376-0559 Fax: (805) 376-8180

U.S. Mid-Atlantic

Phone: (215) 244-6784 Fax: (215) 244-9292

U.S. North Central

Phone: (630) 773-3454 (630) 773-3907 Fax:

U.S. Northeast

Phone: (978) 692-7660 Fax: (978) 692-8185

U.S. Northwest/Pacific West

Phone: (408) 249-9696 Fax: (408) 249-7113

U.S. South Central

Phone: (972) 733-0723 Fax: (972) 407-0639

U.S. Southeast

Phone: (770) 246-8283 Fax: (770) 246-0018

U.S. Southwest

Phone: (949) 222-9119 (949) 222-0620 Fax:

APAC Headquarters

Conexant Systems Singapore, Pte. Ltd. 1 Kim Seng Promenade Great World City #09-01 East Tower Singapore 237994 Phone: (65) 737 7355 Fax: (65) 737 9077

Australia

Phone: (61 2) 9869 4088 (61 2) 9869 4077

China

Phone: (86 2) 6361 2515 Fax: (86 2) 6361 2516

Hong Kong

Phone: (852) 2 827 0181 Fax: (852) 2 827 6488

India

Phone: (91 11) 692 4780 Fax: (91 11) 692 4712

Korea

Phone: (82 2) 565 2880 (82 2) 565 1440 Fax:

Europe Headquarters

Conexant Systems France Les Taissounieres B1 1680 Route des Dolines BP 283

06905 Sophia Antipolis Cedex

France

Phone: (33 4) 93 00 33 35 Fax: (33 4) 93 00 33 03

Europe Central

Phone: (49 89) 829 1320 Fax: (49 89) 834 2734

Europe Mediterranean

Phone: (39 02) 9317 9911 (39 02) 9317 9913 Fax

Europe North

Phone: (44 1344) 486 444 Fax: (44 1344) 486 555

Europe South

Phone: (33 1) 41 44 36 50 Fax: (33 1) 41 44 36 90

Middle East Headquarters

Conexant Systems Commercial (Israel) Ltd. P.O. Box 12660 Herzlia 46733

Israel

Phone: (972 9) 952 4064 (972 9) 951 3924 Fax:

Japan Headquarters

Conexant Systems Japan Co., Ltd. Shimomoto Building 1-46-3 Hatsudai, Shibuya-ku Tokyo, 151-0061

Japan

Phone: (81 3) 5371 1567 Fax: (81 3) 5371 1501

Taiwan Headquarters

Conexant Systems, Taiwan Co., Ltd. Room 2808 International Trade Building

Keelung Road, Section 1

Taipei 110 Taiwan, ROC

Phone: (886 2) 2720 0282 (886 2) 2757 6760 Fax: