60V N-CHANNEL SELF PROTECTED ENHANCEMENT MODE IntelliFET™ MOSFET

SUMMARY

Continuous drain source voltage V_{DS} =60V On-state resistance 550m Ω Nominal load current 1.6A Clamping Energy 550mJ

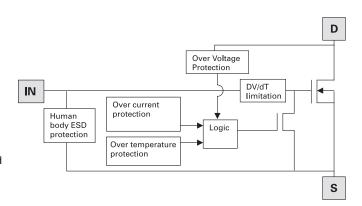
DESCRIPTION

Self protected low side MOSFET. Monolithic over temperature, over current, over voltage (active clamp) and ESD protected logic level power MOSFET intended as a general purpose switch.

SOT223 PACKAGE

FEATURES

- · High continuous current rating
- · Logic level input
- Input protection (ESD)
- · Thermal shutdown with auto restart
- Over load protection
- Short circuit protection with pulse start capability and auto restart
- Over voltage protection (active clamp)
- Load dump protection (actively protects load)


D S D IN

PINOUT DIAGRAM

APPLICATIONS

- Especially suited for loads with a high inrush current such as lamps and motors
- All types of resistive, inductive and capacitive loads in switching applications
- µC compatible power switch for 12V and 24V DC applications and for 42V Powernet
- Automotive rated
- Replaces electromechanical relays and discrete circuits

FUNCTIONAL BLOCK DIAGRAM

BSP75G

ADVANCE INFORMATION

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	LIMIT	UNIT
Continuous drain-source voltage	V _{DS}	60	V
Drain-source voltage for short circuit protection	V _{DS(SC)}	36	V
Continuous input voltage	V _{IN}	-0.2 +10	V
Peak input voltage	V _{IN}	-0.2 +20	V
Operating temperature range	T _{i,}	-40 to +150	°C
Storage temperature range	T _{stg}	-55 to +150	°C
Power dissipation at T _A =25°C	P _D	2.5	W
Continuous drain current @ V _{IN} =10V; T _A =25°C ²	I _D	1.6	А
Pulsed drain current @ V _{IN} =10V	I _{DM}	3	А
Unclamped single pulse inductive energy	E _{AS}	550	mJ
Load dump protection	V _{LoadDump}	80	V
Electrostatic discharge (Human Body Model)	V _{ESD}	4000	V

NOTES

THERMAL RESISTANCE

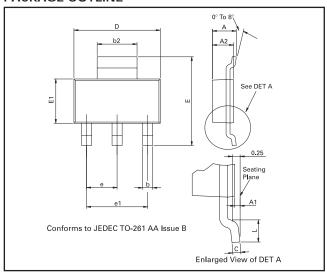
PARAMETER	SYMBOL	VALUE	UNIT
Junction to ambient (a)	RθJA	50	°C/W

 $^{^2}$ For a device surface mounted on FR4 PCB measured at t \leq 10s

BSP75G

ELECTRICAL CHARACTERISTICS (at T_{amb} = 25°C unless otherwise stated)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
STATIC						
Drain-source clamp voltage	V _{DS(AZ)}	60	70	75	V	I _D =10mA
Off state drain current	I _{DSS}		0.1	3	μΑ	V _{DS} =12V, V _{IN} =0V
Off state drain current	I _{DSS}		3	15	μΑ	V _{DS} =32V, V _{IN} =0V
Input threshold voltage	V _{IN(th)}	1	2.1	2.5	V	I _D =10mA
Input current	I _{IN}		0.7	1.2	mA	V _{IN} =+5V
Input current	I _{IN}		1.5	2.7	mA	V _{IN} =+7V
Input current	I _{IN}		4	7	mA	V _{IN} =+10V
Static drain-source on-state resistance	R _{DS(on)}		520	675	mΩ	V _{IN} =5V, I _D =0.7A
Static drain-source on-state resistance	R _{DS(on)}		385	550	mΩ	V _{IN} =10V, I _D =0.7A
Continuous load current ²	I _D			1.6	Α	V _{IN} =10V
Continuous load current ²	I _D			1	Α	V _{IN} =5V
Current limit ³	I _{D(LIM)}	0.7	1.1	1.75	Α	V _{IN} =5V, V _{DS} >5V
Current limit ³	I _{D(LIM)}	2	3	4	Α	V _{IN} =10V, V _{DS} >5V
DYNAMIC	•	•	•	•	•	
Turn-on time (V _{IN} to 90% I _D)	t _{on}		4	20	μS	R _L =22Ω, V _{IN} =0 to 10V, V _{BB} =12V
Turn-off time (V_{IN} to 90% I_{D})	t _{off}		10	20	μS	R _L =22Ω, V _{IN} =10V to 0V, V _{BB} =12V
Slew rate on (70 to 50% V _{BB})	-dV _{DS} /dt _{on}		6.5	20	V/µs	$R_L=22\Omega$, $V_{IN}=0$ to 10V, $V_{BB}=12V$
Slew rate off (50 to 70% V _{BB})	DV _{DS} /dt _{on}		3.2	10	V/µs	R _L =22Ω, V _{IN} =10V to 0V, V _{BB} =12V
PROTECTION FUNCTIONS ¹	•					
Required input voltage for over temperature protection	V _{PROT}	4.5			V	
Thermal overload trip temperature	T _{JT}	150	175		°C	
Thermal hysteresis			10		°C	
Unclamped single pulse inductive energy Tj=25°C	E _{AS}	550			mJ	I _{D(ISO)} =0.7A, V _{BB} =32V


Integrated protection functions are designed to prevent IC destruction under fault conditions described in the datasheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous, repetitive operation.
For a device surface mounted on FR4 PCB measured at t≤10s.

³ The drain current is limited to a reduced value when Vds exceeds a safe value.

BSP75G

ADVANCE INFORMATION

PACKAGE OUTLINE

PACKAGE DIMENSIONS

DIM	Millin	neters	DIM	Millimeters	
DIIVI	MIN	MAX		MIN	MAX
А	_	1.80	D	6.30	6.70
A1	0.02	0.10	е	2.30 E	BASIC
A2	1.55	1.65	e1	4.60 E	BASIC
b	0.66	0.84	E	6.70	7.30
b2	2.90	3.10	E1	3.30	3.70

© Zetex plc 2003

Europe		Americas	Asia Pacific
Zetex plc Fields New Road Chadderton Oldham, OL9 8NP United Kingdom	Zetex GmbH Streitfeldstraße 19 D-81673 München Germany	Zetex Inc 700 Veterans Memorial Hwy Hauppauge, NY 11788 USA	Zetex (Asia) Ltd 3701-04 Metroplaza Tower 1 Hing Fong Road Kwai Fong Hong Kong
Telephone (44) 161 622 4444 Fax: (44) 161 622 4446 hq@zetex.com	Telefon: (49) 89 45 49 49 0 Fax: (49) 89 45 49 49 europe.sales@zetex.com	Telephone: (1) 631 360 2222 Fax: (1) 631 360 8222 usa.sales@zetex.com	Telephone: (852) 26100 611 Fax: (852) 24250 494 asia.sales@zetex.com

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to **www.zetex.com**

