November 1988 Revised December 1998 # 74ACT563 Octal Latch with 3-STATE Outputs #### **General Description** The ACT563 is a high-speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable (\overline{OE}) inputs. The ACT563 device is functionally identical to the ACT573, but with inverted outputs. #### **Features** - I_{CC} and I_{OZ} reduced by 50% - Inputs and outputs on opposite sides of package allow easy interface with microprocessors - Useful as input or output port for microprocessors - Functionally identical to ACT573 but with inverted out- - Outputs source/sink 24 mA - ACT563 has TTL-compatible inputs #### **Ordering Code:** | Order Number | Package Number | Package Description | |--------------|----------------|---| | 74ACT563SC | M20B | 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body | Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code. #### **Logic Symbols** #### **Connection Diagram** #### **Pin Descriptions** | Pin Names | Description | | | | |-------------------------------------|-----------------------------|--|--|--| | D ₀ –D ₇ | Data Inputs | | | | | LE | Latch Enable Input | | | | | ŌĒ | 3-STATE Output Enable Input | | | | | \overline{O}_0 – \overline{O}_7 | 3-STATE Latch Outputs | | | | $\mathsf{FACT^{\scriptscriptstyle\mathsf{TM}}}$ is a trademark of Fairchild Semiconductor Corporation. ### **Functional Description** The ACT563 contains eight D-type latches with 3-STATE complementary outputs. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs at setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE buffers are controlled by the Output Enable (OE) input. When OE is LOW, the buffers are in the bi-state mode. When $\overline{\text{OE}}$ is HIGH the buffers are in the high impedance mode but that does not interfere with entering new data into the latches. #### **Function Table** | Inputs | | | Internal | Outputs | Function | |--------|----|---|----------|---------|-------------| | OE | LE | D | Q | 0 | | | Н | Х | Χ | Х | Z | High-Z | | Н | Н | L | Н | Z | High-Z | | Н | Н | Н | L | Z | High-Z | | Н | L | Χ | NC Z | | Latched | | L | Н | L | Н | Н | Transparent | | L | Н | Н | L | L | Transparent | | L | L | Χ | NC | NC | Latched | - H = HIGH Voltage Level L = LOW Voltage Level - X = Immaterial Z = High Impedance NC = No Change #### **Logic Diagram** Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays. **Absolute Maximum Ratings**(Note 1) Supply Voltage (V_{CC}) -0.5V to +7.0V DC Input Diode Current (I_{IK}) $\begin{array}{ccc} \rm V_I = -0.5V & -20~mA \\ \\ \rm V_I = V_{CC} + 0.5V & +20~mA \\ \\ \rm DC~Input~Voltage~(V_I) & -0.5V~to~V_{CC} + 0.5V \end{array}$ DC Output Diode Current (I_{OK}) $V_{O} = -0.5V$ -20 mA $V_{O} = V_{CC} + 0.5V$ +20 mA DC Output Voltage (V_O) -0.5V to $V_{CC} + 0.5V$ DC Output Source or Sink Current (I_O) $\pm 50 \text{ mA}$ DC V_{CC} or Ground Current per Output Pin (I_{CC} or I_{GND}) ± 50 mA Storage Temperature (T_{STG}) -65° C to +150 $^{\circ}$ C Junction Temperature (T_J) (PDIP) 140°C # Recommended Operating Conditions Minimum Input Edge Rate ($\Delta V/\Delta t$) $V_{\mbox{\scriptsize IN}}$ from 0.8V to 2.0V V_{CC} @ 4.5V, 5.5V 125 mV/ns Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACTTM circuits outside databook specifications. #### **DC Electrical Characteristics** | Symbol | Parameter | v _{cc} | V _{CC} | | T _A =-40°C to +85°C | Units | Conditions | | |------------------|-------------------------|-----------------|-----------------------|-------|--------------------------------|-------|------------------------------------|--| | | | (V) | Typ Guaranteed Limits | | İ | | | | | V _{IH} | Minimum HIGH Level | 4.5 | 1.5 | 2.0 | 2.0 | V | V _{OUT} = 0.1V | | | | Input Voltage | 5.5 | 1.5 | 2.0 | 2.0 | | or V _{CC} – 0.1V | | | V _{IL} | Maximum LOW Level | 4.5 | 1.5 | 0.8 | 0.8 | V | V _{OUT} = 0.1V | | | | Input Voltage | 5.5 | 1.5 | 0.8 | 0.8 | | or V _{CC} – 0.1V | | | V _{OH} | Minimum HIGH Level | 4.5 | 4.49 | 4.4 | 4.4 | V | $I_{OUT} = -50 \mu A$ | | | | Output Voltage | 5.5 | 5.49 | 5.4 | 5.4 | | | | | | | | | | | | $V_{IN} = V_{IL}$ or V_{IH} | | | | | 4.5 | | 3.86 | 3.76 | V | $I_{OH} = -24 \text{ mA}$ | | | | | 5.5 | | 4.86 | 4.76 | | $I_{OH} = -24 \text{ mA (Note 2)}$ | | | V _{OL} | Maximum LOW Level | 4.5 | 0.001 | 0.1 | 0.1 | V | I _{OUT} = 50 μA | | | | Output Voltage | 5.5 | 0.001 | 0.1 | 0.1 | | | | | | | | | | | | $V_{IN} = V_{IL}$ or V_{IH} | | | | | 4.5 | | 0.36 | 0.44 | V | I _{OL} = 24 mA | | | | | 5.5 | | 0.36 | 0.44 | | I _{OL} = 24 mA (Note 2) | | | I _{IN} | Maximum Input | 5.5 | | ±0.1 | ±1.0 | μΑ | $V_I = V_{CC}$, GND | | | | Leakage Current | | | | | | | | | I _{OZ} | Maximum 3-STATE | 5.5 | | ±0.25 | ±2.5 | μА | $V_I = V_{IL}, V_{IH}$ | | | | Current | | | | | | $V_O = V_{CC}$, GND | | | I _{CCT} | Maximum | 5.5 | 0.6 | | 1.5 | mA | $V_I = V_{CC} - 2.1V$ | | | | I _{CC} /Input | | | | | | | | | I _{OLD} | Minimum Dynamic | 5.5 | | | 75 | mA | V _{OLD} = 1.65V Max | | | I _{OHD} | Output Current (Note 3) | 5.5 | | 1 | -75 | mA | V _{OHD} = 3.85V Min | | | I _{CC} | Maximum Quiescent | 5.5 | | 4.0 | 40.0 | μА | $V_{IN} = V_{CC}$ | | | | Supply Current | | | | | | or GND | | Note 2: All outputs loaded; thresholds on input associated with output under test. Note 3: Maximum test duration 2.0 ms, one output loaded at a time. ## **AC Electrical Characteristics** | | | V _{cc} | $T_A = +25^{\circ}C$ $C_L = 50 \text{ pF}$ | | | $T_A = -40$ °C to +85°C $C_L = 50$ pF | | Units | |------------------|---------------------------|-----------------|--|-----|------|---------------------------------------|------|-------| | Symbol | ol Parameter | (V) | | | | | | | | | | (Note 4) | Min | Тур | Max | Min | Max | | | t _{PLH} | Propagation Delay | 5.0 | 3.0 | 7.0 | 11.5 | 2.5 | 12.5 | ns | | | D_n to \overline{O}_n | | | | | | | | | t _{PHL} | Propagation Delay | 5.0 | 3.0 | 6.0 | 10.0 | 2.5 | 11.0 | ns | | | D_n to \overline{O}_n | | | | | | | | | t _{PLH} | Propagation Delay | 5.0 | 3.0 | 6.5 | 10.5 | 2.5 | 11.5 | ns | | | LE to \overline{O}_n | | | | | | | | | t _{PHL} | Propagation Delay | 5.0 | 2.5 | 5.5 | 9.5 | 2.0 | 10.5 | ns | | | LE to \overline{O}_n | | | | | | | | | t _{PZH} | Output Enable Time | 5.0 | 2.5 | 5.5 | 9.0 | 2.0 | 10.0 | ns | | t _{PZL} | Output Enable Time | 5.0 | 2.0 | 5.5 | 8.5 | 2.0 | 9.5 | ns | | t _{PHZ} | Output Disable Time | 5.0 | 3.5 | 6.5 | 10.5 | 2.5 | 11.5 | ns | | t _{PLZ} | Output Disable Time | 5.0 | 2.0 | 4.5 | 8.0 | 1.0 | 8.5 | ns | Note 4: Voltage Range 5.0 is 5.0V ±0.5V # **AC Operating Requirements** | Symbol | Parameter | V _{CC} (V) | $T_A = +25^{\circ}C$ $C_L = 50 \text{ pF}$ | | $T_A = -40$ °C to $+85$ °C $C_L = 50$ pF | Units | |----------------|---|---------------------|--|-----|--|-------| | | | (Note 5) | Тур | Gua | ranteed Minimum | | | t _s | Setup Time, HIGH or LOW
D _n to LE | 5.0 | 1.5 | 4.0 | 4.5 | ns | | t _h | Hold Time, HIGH or LOW D _n to LE | 5.0 | -2.0 | 0 | 0 | ns | | t _w | LE Pulse Width, HIGH | 5.0 | 2.0 | 3.0 | 3.0 | ns | Note 5: Voltage Range 5.0 is 5.0V ±0.5V # Capacitance | Symbol Parameter | | Тур | Units | Conditions | |------------------|-------------------------------|------|-------|------------------------| | C _{IN} | Input Capacitance | 4.5 | pF | V _{CC} = OPEN | | C _{PD} | Power Dissipation Capacitance | 50.0 | pF | V _{CC} = 5.0V | 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body Package Number M20B #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com