Linear IC Converter

CMOS

D/A Converter for Digital Tuning
 (12-channel, 8-bit, on-chip OP amp, low-voltage)
 MB88346L

■ DESCRIPITON

The Fujitsu MB88346L is an 8-bit D/A converter capable of low-voltage operation, and designed with a built-in amp on each of its 12 analog output lines for large-current drive capability.
The use of serial data input means that only three control lines are required, and enables cascade connection of multiple MB88346L chips.
The MB88346L is suitable for applications such as electronic volume controls and replacement of semi-fixed resistors in tuning systems.
In addition, the MB88346L is both function-compatible and pin-compatible with the MB88346B now in use, allowing easy substitution of the MB88346L for reduced supply voltage.

■ FEATURES

- Low voltage operation (Vcc/Vdd: 2.7 to 3.6 V)
- Ultra-low power consumption ($0.5 \mathrm{~mW} / \mathrm{ch}$ at $\mathrm{Vcc}=3 \mathrm{~V}$)
- Ultra-compact space-saving package lineup (SSOP-20)
- Contains 12-channel R-2R type 8 -bit D/A converter
- On-chip analog output amps (sink current max. 1.0 mA , source current max. 1.0 mA)
- Analog output range from 0 to Vcc
- Two separate power supply/ground lines for MCU interface block/operational amplifier output buffer block and D/A converter block
- Serial data input, maximum operating speed 2.5 MHz
- (maximum operating speed in cascade connection is 1.5 MHz)
- CMOS process
- Package lineup includes DIP 20-pin, SOP 20-pin, SSOP 20-pin.

PACKAGES

20-pin plastic DIP
(FIP-20P-M02)
(FPT-20P-M01)

PIN ASSIGNMENT

PIN DESCRIPTION

Pin No.	Symbol	I/O	Function
17	DI	I	Serial address/data input to the internal 12-bit shift register: The address/data format is that upper 4 bits (D11 to D8) indicate an addres and lower 8 bits (D7 to D0) indicate data. The D11 (MSB) is the first-in bit and D0 (LSB) is the last-in bit.
14	DO	O	Outputs MSB bit data from 12-bit shift register.
16	CLK	I	Shift clock input to the internal 12-bit shift register: At the rising edge of CLK data on the DI pin is shifted into the LSB of the shift register and contents of the shift register are shifted right (to the MSB).
15	LD	I	Load strobe input for a 12-bit address/data: A high level on the LD pin latches a 4-bit address (upper 4 bits: D11 to D8) of the internal 12-bit shift register into the internal address decoder, and writes 8-bit data (lower 8 bits: D7 to D0) of the shift register into an internal data latch
18			
19	AO11	AOlected by the latched address.	

BLOCK DIAGRAM

MB88346L

DATA CONFIGURATION

The MB88346L has a 12-bit shift register for chip control functions. The 12-bit shift register must be used to set up data in the configuration shown below.

The data configuration has a total of 12 bits, four for address selection and eight for D/A data output.

1. Shift Register Control Data Configuration

Last First LSB MSB											
D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11
$\mid \longleftarrow \mathrm{D} / \mathrm{A}$ data output \longrightarrow - Address selection $\longrightarrow \mid$											

2. D/A Converter Control Signals

D0	D1	D2	D3	D4	D5	D6	D7	D/A data output
0	0	0	0	0	0	0	0	\cong Vss
1	0	0	0	0	0	0	0	\cong VLB+ Vss
0	1	0	0	0	0	0	0	$\cong \mathrm{VLB} \times 2+\mathrm{VSS}$
:	:	-	:	-	-	-	:	-
0	1	1	1	1	1	1	1	$\cong \mathrm{VLB} \times 254+\mathrm{Vss}$
1	1	1	1	1	1	1	1	\cong VDD

$V_{L B}=\left(V_{D D}-V_{s s}\right) / 255$

3. Address Selection Signals

D8	D9	D10	D11	Address selection
0	0	0	0	Don't Care
0	0	0	1	AO_{1} selection
0	0	1	0	AO_{2} selection
0	0	1	1	AO_{3} selection
0	1	0	0	AO_{4} selection
0	1	0	1	AO_{5} selection
0	1	1	0	AO_{6} selection
0	1	1	1	AO_{7} selection
1	0	0	0	AO_{8} selection
1	0	0	1	AO_{9} selection
1	0	1	0	AO 10 selection
1	0	1	1	AO 11 selection
1	1	0	0	AO 12 selection
1	1	0	1	Don't Care
1	1	1	0	Don't Care
1	1	1	1	Don't Care

OPERATING DESCRIPTION

1. Timing Chart for Data Condition Setup

2. Analog Output Voltage Range

ABSOLUTE MAXIMUM RATINGS

Prameter	Symbol	Condition	Rating		Unit
			Min.	Max.	
Power supply voltage	Vcc	GND used as reference,$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3	+7.0	V
	VDD*		-0.3	+7.0	V
Input voltage	VIN		-0.3	$\mathrm{Vcc}+0.3$	V
Output voltage	Vout		-0.3	$\mathrm{Vcc}+0.3$	V
Power consumption	Pd	-	-	250	mW
Operating temperature	Ta	-	-20	+85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-	-55	+150	${ }^{\circ} \mathrm{C}$

* $: V c c \geq V_{D D}$

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Prameter	Symbol	Condition	Value			Unit
			Min.	Typ.	Max.	
Power supply voltage 1	Vcc	-	2.7	-	3.6	V
	GND	-	-	0	-	V
Power supply voltage 2	VdD	Vdo - Vss $\geq 2.0 \mathrm{~V}$	2.0	-	Vcc	V
	Vss		GND	-	Vcc-2.0	V
Analog output source current	IAL	$\mathrm{Vcc}=3.0 \mathrm{~V}$	-	-	1.0	mA
Analog output sink current	ІАн	$\mathrm{Vcc}=3.0 \mathrm{~V}$	-	-	1.0	mA
Oscillator limiting output capacity	Cal	-	-	-	0.1	$\mu \mathrm{F}$
Digital data value range	-	-	\#00	-	\#FF	-
Operating temperature	Ta	-	-20	-	+85	${ }^{\circ} \mathrm{C}$

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB88346L

ELECTRICAL CHARACTERISTICS

1. DC Characteristics

(1) Digital Block
$\left(\mathrm{V} D \mathrm{D}, \mathrm{Vcc}=+2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}(\mathrm{Vcc} \geq \mathrm{VdD}), \mathrm{GND}=\mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Prameter	Symbol	Pin	Condition	Value			Unit
				Min.	Typ.	Max.	
Power supply voltage	Vcc	Vcc	-	2.7	3.0	3.6	V
Power supply current 1	Icc		Stationary (CLK signal stopped), no load	-	1.2	3.0	mA
Input leak current	lık	$\underset{\text { LD }}{\text { CLK, }}$	Vin $=0$ to Vcc	-10	-	10	$\mu \mathrm{A}$
L level input voltage	VIL		-	-	-	0.2 Vcc	V
H level input voltage	VIH		-	0.8 Vcc	-	-	V
L level output voltage	VoL	DO	$\mathrm{loL}=2.5 \mathrm{~mA}$	-	-	0.4	V
H level output voltage	Vон		IOH $=-400 \mu \mathrm{~A}$	Vcc -0.4	-	-	V

(2) Analog Block 1

Prameter	Symbol	Pin	Condition	Value			Unit
				Min.	Typ.	Max.	
Power consumption	IdD	Vdo	Maximum setting value from \#00 to \#FF	-	0.6	1.5	mA
Analog voltage	Vdo	Vdo	VDD - Vss ≥ 2.0	2.0	-	Vcc	V
	Vss	Vss		GND	-	Vcc-2.0	V
Resolution	Res	$\begin{gathered} \mathrm{AO}_{1} \text { to } \\ \mathrm{AO}_{12} \end{gathered}$	-	-	8	-	bits
Monotonic increase	Rem		$\begin{aligned} & \mathrm{VDD} \leq \mathrm{VCC}-0.1 \mathrm{~V}, \\ & \mathrm{Vss} \geq 0.1 \mathrm{~V}, \text { no load } \end{aligned}$	-	8	-	bits
Nonlinearity error	LE			-1.5	-	1.5	LSB
Differential linearity error	DLE			-1.0	-	1.0	LSB

Nonlinearity error: Deviation (error) in input/output curves with respect to an ideal straight line connecting output voltage at " 00 " and output voltage at "FF."
Differential linearity error: Deviation (error) in amplification with respect to theoretical increase in amplification per 1-bit increase in digital value.

(3) Analog Block 2

Prameter	Symbol	Pin	Condition	Value			Unit
				Min.	Typ.	Max.	
Output minimum voltage 1	Vaol1	AO1 toAO_{12}	$\begin{aligned} & \mathrm{VDD}=\mathrm{VCC}=3.0 \mathrm{~V}, \\ & \mathrm{VSS}=\mathrm{GND}=0.0 \mathrm{~V}, \\ & \mathrm{IAL}=0 \mu \mathrm{~A} \\ & \text { Digital data }=\# 00 \end{aligned}$	Vss	-	Vss +0.1	V
Output minimum voltage 2	Vaolz		$\begin{aligned} & \text { VDD }=\mathrm{VCC}=3.0 \mathrm{~V}, \\ & \mathrm{VSS}=\mathrm{GND}=0.0 \mathrm{~V}, \\ & \text { lAL }=500 \mu \mathrm{~A} \\ & \text { Digital data }=\# 00 \end{aligned}$	Vss - 0.2	Vss	Vss +0.2	V
Output minimum voltage 3	Vaol3		$\begin{aligned} & \text { VDD }=\mathrm{VCC}=3.0 \mathrm{~V}, \\ & \mathrm{~V} s=\mathrm{GND}=0.0 \mathrm{~V}, \\ & \text { lAH }=500 \mu \mathrm{~A} \\ & \text { Digital data }=\# 00 \end{aligned}$	Vss	-	Vss +0.2	V
Output minimum voltage 4	Vaol4		$\begin{aligned} & \mathrm{VDD}=\mathrm{VCC}=3.0 \mathrm{~V}, \\ & \mathrm{VSS}=\mathrm{GND}=0.0 \mathrm{~V}, \\ & \mathrm{IAL}=1.0 \mathrm{~mA} \\ & \text { Digital data }=\# 00 \end{aligned}$	Vss - 0.3	Vss	Vss +0.3	V
Output minimum voltage 5	Vaols		$\begin{aligned} & \mathrm{VDD}=\mathrm{VCC}=3.0 \mathrm{~V}, \\ & \mathrm{VSS}=\mathrm{GND}=0.0 \mathrm{~V} \\ & \text { IAH }=1.0 \mathrm{~mA} \\ & \text { Digital data }=\# 00 \end{aligned}$	Vss	-	Vss +0.3	V
Output maximum voltage 1	VaOH1		$\begin{aligned} & \mathrm{VDD}=\mathrm{VCC}=3.0 \mathrm{~V}, \\ & \mathrm{VSS}=\mathrm{GND}=0.0 \mathrm{~V}, \\ & \mathrm{IAL}=0 \mu \mathrm{~A} \\ & \text { Digital data }=\# \mathrm{FF} \end{aligned}$	Vdo - 0.1	-	Vdo	V
Output maximum voltage 2	VAOH2		$\begin{aligned} & \mathrm{VDD}=\mathrm{VCC}=3.0 \mathrm{~V}, \\ & \mathrm{VSS}=\mathrm{GND}=0.0 \mathrm{~V}, \\ & \text { IAL }=500 \mu \mathrm{~A} \\ & \text { Digital data }=\# F F \end{aligned}$	Vdd - 0.2	-	Vdo	V
Output maximum voltage 3	Vаонз		$\begin{aligned} & \text { VDD }=\mathrm{VCC}=3.0 \mathrm{~V}, \\ & \mathrm{~V} \text { SS }=\mathrm{GND}=0.0 \mathrm{~V}, \\ & \text { lAH = } 500 \mu \mathrm{~A} \\ & \text { Digital data }=\# \mathrm{FF} \end{aligned}$	Vdo - 0.2	VDD	Vdd +0.2	V
Output maximum voltage 4	VaOH4		$\begin{aligned} & \mathrm{VDD}=\mathrm{VCC}=3.0 \mathrm{~V}, \\ & \mathrm{VSS}=\mathrm{GND}=0.0 \mathrm{~V}, \\ & \mathrm{IAL}=1.0 \mathrm{~mA} \\ & \text { Digital data }=\# \mathrm{FF} \end{aligned}$	Vdd - 0.3	-	Vdd	v
Output maximum voltage 5	VaOH5		$\begin{aligned} & \mathrm{VDD}=\mathrm{VCC}=3.0 \mathrm{~V}, \\ & \mathrm{~V} \mathrm{VS}=\mathrm{GND}=0.0 \mathrm{~V}, \\ & \text { IAH }=1.0 \mathrm{~mA} \\ & \text { Digital data }=\# \mathrm{FF} \end{aligned}$	Vdd - 0.3	VDD	VdD +0.3	V

2. AC Characteristics

(VDd, $\mathrm{Vcc}=+2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}(\mathrm{Vcc} \geq \mathrm{VdD}), \mathrm{GND}=\mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

P Prameter	Symbol	Condition	Value		Unit
			Min.	Max.	
Clock L level pulse width	tcKL	-	200	-	ns
Clock H level pulse width	tckH	-	200	-	ns
Clock rise time Clock fall time	tcr tcf	-	-	200	ns
Data setup time	tDCH	-	30	-	ns
Data hold time	tCHD	-	60	-	ns
Load setup time	tchL	-	200	-	ns
Load hold time	tLDC	-	100	-	ns
Load H level pulse width	tLDH	-	100	-	ns
Data output delay time	tDo	See "• Load condition 1"	70	600	ns
D/A output settling time	tLDD	See "• Load condition 2"	-	300	$\mu \mathrm{~s}$

- Load condition 1

- Load condition 2

- Input/output timing

Vao vs. Iao CHARACTERISTICS: EXAMPLE

(Continued)

MB88346L

■ ORDERING INFORMATION

Part number	Package	Remarks
MB88346LP	20-pin Plastic DIP (DIP-20P-M02)	
MB88346LPF	20-pin Plastic SOP (FPT-20P-M01)	
MB88346LPFV	20-pin Plastic SSOP (FPT-20P-M03)	

PACKAGE DIMENSIONS

(Continued)

(Continued)
(Continued)

MB88346L

FUJITSU LIMITED

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

